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ABSTRACT

A largely experimental study is described, which indicates
that dissipation of vibratory)energy at multi-point-fastened
(bolted, riveted, spot-welded) joints connecting panels to
stiffeners or to other panels, at frequencies considerably above
the panel fundamental, is primarily due to the "pumping" of air
produced as adjacent surfaces between fasteners move away from
and toward each other.

Heckl's absorption coefficient concept (J. Acoust. Soc. Am.
34, 803-808, June 1962) is shown to apply to the aforementioned
joint types, and it is demonstrated that the joint absorption
coefficient is a function of the ratio of fastener spacing to
plate flexural wavelength. Based on these findings and on em-
pirical data, an approach is developed for estimating the damping
of panels with joints.

A study of the energy dissipation characteristics of plate-
strips whose ends are bolted to rigid supporting structures is
discussed. From comparison of data obtained by direct measure-
ment of energy dissipation with analysis for a number of possible
mechanisms it is concluded that interface slip plays a minor role
in such bolted joints. Damping here appears to be primarily
associated with relative motions normal to the mating surfaces.

This technical documentary report has been reviewed and is
approved.

HOWARD A. MA4
Chief , Vehicl/Dyniics Division
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INTRODUCTION

The capability of a structure to dissipate vibratory energy
plays an important role in establishing the levels of the struc-
ture's responses to broad-band acoustic or mechanical excitation,
such as that from rocket noise. The designer of aerospace struc-
tures must be able to estimate this energy dissipation capability
or "damping" in order to predict the responses of his structures.
In addition, he desires to understand the most important mech-
anisms responsible for damping in order to be able to design con-
figurations incorporating favorable damping characteristics with
the minimum weight or economic penalty.

Much useful information is available concerning the damping
properties of materials and homogeneous structures (Refs. 1, 2)*,
concerning the design of highly damped structures incorporating
viscoelastic materials (Refs. 3, 4), and concerning energy dissi-
pation associated with slip at some simple structural interfaces
(Refs. 5, 6). On the other hand, the damping of built-up struc-
tures (such as aircraft fuselages, which consist of a multitude
of panels and reinforcing members joined together by various
fastening means) has not been studied extensively, particularly
for frequencies above the fundamental resonances of the substruc-
tural panels.

Built-up structures have been found to exhibit considerably
higher damping than similar one-piece structures. Since the
former differ from the latter only in that they incorporate
joints, it appears that the higher damping of built-up structures
may be ascribed to the action of these joints, and that an im-
proved understanding of this damping action is desirable. The
presently reported study accordingly concerns itself with obtain-
ing an increased understanding of the dominant mechanisms respon-
sible for the damping of structural joints, with developing means
for predicting the magnitudes of such damping, and with delineating
approaches for obtaining joint designs with improved damping char-
acteristics.

REVIEW OF PRIOR WORK

Joints of interest for aerospace structures may perhaps be
most usefully classed according to the methods of Joining and
according to the types of structures being joined. The joining
methods and structural configurations of greatest importance are
tabulated below.

*Reference list appears at end of Appendix I.

This manuscript released by the author July 1964 for publication as a RTD
Technical Documentary Report.
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Joining Methods

1. Rivets
2. Bolts or screws
3. Spot welds
4. Continuous welds
5. Adhesives

Structures

1. Rigid structures joined to rigid structures*
2. Plates joined to rigid structures
3. Beams joined to rigid structures
4. Plates joined to plates
5. Beams joined to plates (e.g., ribbed panels)
6. Beams joined to beams (also, built-up beams)

The damping of joints in beams has received considerable
prior attention. From the work of Pian (Refs. 6, 7) one may
calculate the damping of riveted or bolted built-up or joined
beams with sufficient accuracy for most practical purposes.
Goodman's studies (Refs. 5, 8, 9) provide one with similar
capabilities concerning the damping of beams made up of pressed-
together leaves. These analyses assume Coulomb friction to be
the dominant damping mechanism, pertain to flexural motion of
the beams for frequencies up to the fundamental resonance, and
agree reasonably with experimental measurements. Understanding
of the damping of gross flexural motions of riveted beams, such
as may be used as primary load-carrying members, thus appears
to be reasonably well in hand.

The damping of built-up or jointed beams with adhesive
joints may be calculated relatively directly from Refs. 4 and
10; joints in which an adhesive is used in conjunction with
rivets are discussed in Ref. 11. Again, the damping of such
joints seems to be fairly adequately understood.

A number of studies by Mentel and his associates (Refs.
12-15) have dealt with the damping of beams and plates whose
ends or edges are joined to rigid structures. Mentel has
studied both Coulomb (dry) and viscoelastically damped (bonded)
joints, primarily under the condition where the beam and plate

*By rigid structures are meant structures whose deformations

are everywhere negligibly small compared to the motions of
their centers of gravity and to the relative motions at the
joints.
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edges only translate within slots in the supporting structures,
and has obtained reasonable agreement between theory and experi-
ment. He has also obtained some indications that rotation of
beam or plate edges in bonded joints may be able to dissipate
energy more effectively than translation, but seems not to have
carried this work to completion.

Welded joints appear generally to have escaped study,
except that some configurations have been devised (Ref. 16) that
seemingly promote energy dissipation by friction in regions near
the welds.

The damping action of beam-plate systems, such as beam-
reinforced plates approximating aircraft fuselage construction,
has only been touched upon (Refs. 17, 18) prior to the present
study. The mechanisms at work there have not been identified,
but some evidence has been obtained that indicates the dominance
of mechanisms other than classical Coulomb friction.

A more detailed review of the prior literature dealing with
damping of structural joints appears in Appendix I.

PRESENT STUDY

The prior state of the art, as summarized in the previous
paragraphs and in Appendix I, and the estimated greater relative
importances of some of the various structural configuration types
listed previously permits one to select some areas in which fur-
ther investigation may be most useful. The present study accord-
ingly concerns itself with the damping of joints between plates
and stiffeners (such as reinforcing beams or bulkheads) and be-
tween plates and other plates (i.e. plate seams) at frequencies
considerably above the plate fundamental; and of joints between
plates and relatively rigid supporting structures at and near the
plate fundamental frequency.

The fastening methods considered here include "point-
connections", such as rivets, bolts or screws, spot welds, and
distributed connections, such as continuous welds, with emphasis
on the former type.

Because of the desire for practical utility of the results,
the present study emphasizes joint configurations that are struc-
turally acceptable (that do not aggravate the usual Joint strength
problems, nor create new ones) and small amplitude motions (since
these are usually associated with less damping than larger ampli-
tudes, and since one usually attempts to avoid large response
amplitudes by proper design).

3



PART I

PLATE-STIFFENER AND PLATE-PLATE JOINTS

AT FREQUENCIES ABOVE PLATE FUNDAMENTAL

RELATIVE MOTIONS AT PLATE-STIFFENER JOINTS

An understanding of the relative motions occurring at joint
interfaces is essential to the study and delineation of the domi-
nant damping mechanisms that occur in joints. Accordingly, some
brief experiments were undertaken in order to obtain an indication
of these relative motions.

Stroboscopic Observation

An initial stroboscopic study was made of the relative
motions occurring at the interface between a plate and a beam
bolted to it. This study was carried out using a 3 ft long
1 in x 1 in x 1/8-in aluminum angle beam, attached along one
edge of a 4 ft x 4 ft aluminum plate of 1/32-in thickness by
means of screws spaced 3 in apart. The plate was suspended
from long strings attached at two of its corners, so that the
edge with the attached beam was vertical. A small shaker,
attached at the lower corner opposite the edge at which the
beam was mounted, was used to drive the plate sinusoidally.
Observations were made with the aid of a hand-held strobo-
scopic light source, adjusted to frequencies near the driving
frequencies.

A considerable amount of motion of the plate portions be-
tween the bolts could be observed relative to the beam, over a
fairly wide range of frequencies. This motion appeared to con-
sist essentially of flexing of the plate portions between rivets
away from the beam and of a subsequent slapping of these portions
against the beam. The deflected portions of the plate generally
were simply curved, but also assumed more complicated multiply
curved shapes at higher frequencies.

The previously described observations were limited to low
frequencies, and thus to long plate flexural wavelengths, since
limited shaker capacity permits one to generate the large ampli-
tudes required for the motions to be visible only at low frequen-
cies. In order to extend the stroboscopic study to shorter plate
wavelengths a beam-plate system was constructed similar to the
previously described one, but made of a rubber (Nichols NE 7585)
in which the longitudinal wave velocity is roughly 3% of that in
aluminum. With this arrangement one could observe the relative

4



motions for plate flexural wavelengths smaller than the bolt
spacing. The system behavior here was found to parallel closely
that previously noted for the aluminum beam-plate system, except
that more complicated curvatures of the plate portions between
rivets were observed for the shorter plate wavelengths.

In the aluminum as well as the rubber structures the observed
relative motions were perpendicular to,the joint interface (or
plate surface). No tangential or interface shearing motions were
observed.

Accelerometer Survey

In order to supplement the previously described information,
particularly in relation to effects of higher frequencies (where
stroboscopic observation is not feasible) and of variations in
amplitude, the previously described aluminum beam-plate arrange-
ment was provided with small piezoelectric accelerometers. One
accelerometer was cemented to the beam at a point midway between
two adjacent bolts, one to the plate midway between two other
bolts, and one approximately in the center of the plate. All
accelerometers were mounted with their sensitive axes perpendic-
ular to the plate surface.

When the plate was driven sinusoidally and the waveforms of
the accelerometer signals were displayed on oscilloscopes, it was
found that all accelerometer signals appeared like pure sinusoids
for low enough excitation amplitudes, at all test frequencies.
However, at each frequency there appeared to exist a threshold
amplitude above which the accelerometers mounted on the beam and
on the plate directly behind the beam produced grossly non-
sinusoidal signals. The accelerometer mounted at the center of
the plate produced essentially undistorted sinusoids when the
amplitudes did not exceed the aforementioned threshold by much,
but also registered distortions at higher amplitudes.

For driving amplitudes slightly above the threshold all
accelerometer signals appeared like sinusoids with distorted
(multiply indented) tops, but undistorted bottom portions. Thus,
distortion occurred only at one extreme of the oscillatory dis-
placement, as one would expect for a motion in which impacts
occur when the beam and plate surfaces move toward each other,
but where no such impacts are produced in the portion of the
cycle where these surfaces move apart. At higher levels both
the top and bottom portions of the sinusoids were distorted, or
the entire waveform had superposed on it high frequency ripples
of considerable magnitude.
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An attempt was made to detect tangential motions by means of
accelerometers mounted at a number of points along the beam and
plate with their sensitive axes parallel to the beam axis. This
attempt was unsuccessful; any small signal that may have been
generated by actual tangential motions was obscured due to the
cross-sensitivity of the accelerometers and the much greater
relative magnitude of normal motions.

Surface Markings

An effort was made to obtain a direct visual indication of
where in a beam-plate joint relative normal or tangential motions
occur. To this purpose the interface surface of the previously
described aluminum angle beam was finely polished before attach-
ment to the plate, the assembled beam-plate system was vibrated
at a large amplitude for several hours, and then the beam was
removed from the plate. Examination of the polished surface by
means of a high power stereo-microscope revealed a number of
scattered markings; however, a repetition of the experiment with-
out subjecting the assembly to vibration revealed that the mark-
ings were caused by the assembly and dissembly process, and not
by the vibration.

Thus, the aforementioned attempt at obtaining an indication
of the relative motions from surface markings on a polished beam
surface proved unsuccessful. Similar lack of success also was
obtained with fine sand, grit, or "dycum" (a lacquer used by
machinists to make scribe marks readily visible) interposed
between mating surfaces.

EXPERIMENTAL STUDY OF EFFECTS OF VARIOUS PARAMETERS

An experimental program was undertaken to determine which
parameters affect the damping of beam-plate joints most signif-
icantly. From a knowledge of such parametric effects one may
hope to gain an insight into the damping mechanisms operative
in such joints.

Experimental Arrangement

All of the experiments reported in this section, unless
otherwise noted, were performed on essentially the same set-up
and used the same instrumentation system and procedures. The
test structure in each case consisted of a plate, with beams
attached near one edge and/or at other positions. The plate
was suspended vertically, from two 10 ft long strings attached
at two plate corners and to a beam near the test room ceiling.

6



The plate was excited via a voice coil cemented to it, and its
response was sensed by means of a small bolted-on piezoelectric
accelerometer. The plate size and shape, as well as the beam
and instrumentation attachment positions on it are shown in
Fig. 1.

Damping measurements were performed using a variation of
the well-known decay-rate technique (Refs. 25, 26). This tech-
nique consists of exciting the test system with white noise,
filtered in a 1/3-octave band, until steady state is reached,
then suddenly turning off the excitation and observing the rate
of decay of the accelerometer signal, filtered in the same band
as the excitation.

Several instrumentation systems were tried; the one found
most convenient and used throughout these experiments is indi-
cated in Fig. 1. In using the decay-rate meter shown there one
matches the oscilloscope trace of the logarithm of a known de-
caying signal to that of the logarithm of the envelope of the
decaying accelerometer output to be measured, and then reads
the signal "reverberation time" T (i.e., the time for tIe
signal level to be reduced by 60 9, or by a factor of 10)
directly. The damping of the system may then be simply computed
from

T 2c/c = 2.2/f T (I)

where q denotes the (dimensionless) loss factor of the system,
c/cs the ratio of the damping coefficient to the critical damping
coetficient (assuming viscous damping), T6 o the decay time in
seconds, and f the center frequency in cps of the band under
consideration.

Equation (1) is strictly valid only if the system being
tested behaves linearly, so that the decay rate (the rate of
change of the logarithm of the envelope of a decaying sinusoidal
signal) or q is independent of amplitude. For linear systems the
envelope of the oscilloscope trace of the logarithm of the accel-
eration signal (vs. time) is a straight line whose negative slope
is proportional to the decay rate. For nonlinear systems this
envelope appears curved or as a segmented line. By comparing the
logarithmic oscilloscope trace of a test signal with calibrated
slanted straight lines provided by the decay-rate meter, one may
thus readily judge the linearity of the systems under test.

All systems for which data are reported subsequently were
observed to behave linearly for the relatively low excitation
levels used in these experiments. Although their linearity may
not be maintained at higher excitation levels, small amplitudes
were of primary interest in the present study, as previously
discussed.
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Third-octave band filtered noise was chosen for the measure-
ments described here rather than pure tone (single frequency)
signals, because of the much simpler experimental procedure and
the more easily interpreted data obtained in this manner. Use
of noise in bands avoids the tedium of adjusting the test fre-
quencies to system resonances and yields data devoid of the
confusing details one would otherwise observe due to the presence
of many resonances in the frequency band of interest.

All bolted connections in all of the experimental specimens
discussed here were made by means of number 6-32 stainless steel
nuts and bolts, with standard steel washers under the bolt heads
and nuts. The torque-tension characteristics of these nut-bolt-
washer combinations were studied in a series of preliminary ex-
periments discussed in Appendix II. The nuts in the test assem-
blies were in all cases tightened to the desired torque by means
of a torque-wrench or torque-driver. Each nut-bolt-washer com-
bination was tightened and loosened several times before final
assembly in order to decrease the spread in the torque-tension
characteristics, in accordance with the test results described
in Appendix II.

Experimental Data

Effect of Bolt Torque - Figures 2 and 3 show the results of
a series of loss factor measurements on the previously described
beam-and-plate system, for several different values of bolt tor-
que. Figure 2 pertains to a 1/16" thick aluminum plate, Fig. 3
to a similar 1/32" plate. The data in these figures are pre-
sented in terms of curves pertaining to the loss factors r0 of
the plates in absence of any attached beams, plus curves for the
loss factor contribution rq-q made by the attached beams, where
'q represents the loss factor of the plate with the beams attached.

From Figs. 2 and 3 one cannot discern a general dependence
of loss factor on bolt-torque. The spread of the indicated loss-
factor values corresponding to a given frequency (but to different
torque) is generally of the order of the precision of the experi-
ment.

Effect of Beam Length - The top portion of Fig. 4 shows the
variation in loss factor contribution r-1i0 one obtains by removing
one or more of the beams from the test plate of Fig. 1. No data
are indicated below 500 cps, because of questionable experimental
precision in this range.

The lower portion of Fig. 4 shows the same data as the upper
portion, but in the form of loss factor contribution r-r 0 per unit
total effective length L of the attached beams. If one visualizes
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waves travelling on the test plate in all directions, then the
effective length of an attached beam may be defined as the total
beam length on which these waves can impinge. Thus, the effec-
tive length of a beam attached at a plate edge is equal to its
actual length, whereas the effective length of a beam portion
near the plate center is twice its actual length. The total
effective length L is the sum of the effective lengths of the
various beam portions. This definition of effective length was
chosen with an eye toward the absorption coefficient idea intro-
duced by Heckl (Refs. 17, 18) and discussed further later in
this report; the quantity (i- 0 )/L is in fact proportional to
the absorption coefficient of the beam.

From the superposition of the data .pertaining to different
beam lengths, as evident in the lower portion of Fig. 4, one may
conclude that the damping contribution per unit effective beam
length is independent of the total beam length for all practical
purposes.

Effect of Bolt Spacing - Figure 5 shows the results of loss
factor measurements performed on the plate sketched in Fig. 1,
with all bolts in place (1-1/2 inch bolt spacing), with every
other bolt removed (3 inch bolt spacing), and again with every
other one of the remaining bolts removed (6 inch bolt spacing).
The three parts of Fig. 5 pertain to three different bolt torques
and serve as a further illustration of the relative independence
of damping behavior on torque (except perhaps for very low tor-
ques).

The results clearly show that the loss factor contributions
of beams are by no means proportional to the number of bolts
present. Instead, greater damping at a given frequency is found
in general to correspond to the presence of fewer bolts. The
damping mechanism thus appears not to be associated with the
bolts themselves.

The fact that the peaks of Fig. 5 occur at lower frequencies
for greater bolt spacing leads one to suspect that the ratio of
the wavelength \ of the flexural plate motion to the bolt spacing
d may play a significant role. For a plate ?=VhcL/f, where f
denotes frequency, h plate thickness, and cL the velocity of
longitudinal waves in the piate material. For a given plate one
thus may write f(d/d )2 = d /,2 , where d is some convenient con-
stant reference leng?h. One may then expect that dependences on
d/?\ of the data of Fig. 5 would be more clearly evident if the
data were replotted on the basis of a "reduced frequency" defined
as f(d/d0 )2 . Figure 6 is such a re-plot, with d taken as 3 in;
it shows that maxima of the damping contributionR made by the beams
in general do occur where the bolt spacing d is equal to an inte-
gral multiple of half wavelengths.
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Effect of Plate Thickness - The results of loss factor
measurements carried out on two beam-plate systems that differ
only in the thicknesses of the plates are indicated in the upper
portion of Fig. 7. Here it appears that the loss factor con-
tribution of a beam at a given frequency is greater if this beam
is attached to a thinner plate.

In view of the dependence of flexural wavelength -A on plate
thickness h dicussed in the previous section one may write
f(h 0 /h) - d / , where h denotes a convenient constant refer-
ence thickness. Dependences on wavelength may then be expected
to be revealed more readily if one re-plots the aforementioned
data against a new reduced frequency defined as f(ho/h). The
lower portion of Fig. 7 is such a re-plot, from which one may
observe that the data for the two plate thicknesses superpose
reasonably well when plotted on this basis.

Effect of Beam Width - Figure 8 shows the results of a
series of damping measurements carried out with a number of
beams of different widths, including three channel sections
designed to have approximately the same bending stiffness.
It appears from this figure that beams of greater width w
provide greater damping contributions.

The curves of Fig. 8 have peaks approximately at frequen-
cies where the bolt spacing matches a half or a whole plate
flexural wavelength, in agreement with previous observations.
No clear relation between wavelength and contact width is
evident.

Effect of Beam Section - Figure 9 summarizes the results
of two series of loss factor measurements carried out on plates
of two different thicknesses, with beams of several different
cross-sections.

The lower set of curves (obtained with a 1/32" thick
aluminum plate) shows no discernible effect of stiffness on
the damping contributions provided by the beam. The upper
set of curves (pertaining to a 1/16" thick plate) on the other
hand, shows generally greater damping corresponding to stiffer
beams. The latter set includes data for beams that are rela-
tively "soft", however; one may conclude from all of the data
of Fig. 9 that the loss factor contributions of attached beams
(having the same contact width) are insensitive to beam cross-
section changes as long as the beams are considerably stiffer
than the plates to which they are attached.
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Effect of Spacers Between Beam and Plate - Figure 10a shows
how the damping contribution made by a bolted-on beam is affected
by the addition of washers between it and the plate to which it
is attached. With washers placed on the bolts the only connec-
tion between the beam and plate occurs in the vicinity of the
bolts; the resulting damping is found to be essentially equal to
that measured with the beam totally absent. The effect of washers
clamped between the beam and plate, midway between the bolts (and
with no washers placed on the bolts), is discussed below.

Effect of Restraints on Relative Motion - The effect of
clamping washers between the beam and test plate at locations
midway between the bolts may be seen from Fig. lOa. One may
observe that these added washers served to produce a marked
reduction in the damping. The washers here appear to act like
additional connectors, reducing the effective spacing between
connectors from 1-1/2 to 3/4 inches.

Reduced damping due to increased constraint of the relative
motion between beam and plate is also evident from Fig. lOb.
This figure.shows that the damping obtained with two beams
mounted back-to-back on the two sides of a plate is considerably
less than that obtained with a single beam, at frequencies where
the bolt spacing exceeds the half wavelength of plate flexural
waves (i.e., above about 1250 cps).

Effect of Interface Lubricants and Additives - The damping
changes obtained by introducing lubricants of various viscosities
between the beam and plate are evident from Fig. lla. Very vis-
cous oils are seen to reduce the observed damping, with higher
viscosities resulting in lower damping. On the other hand, with
low viscosity oils one finds that one obtains somewhat greater
damping at the low frequencies than in the absence of lubricants.
Viscous oils apparently act somewhat like adhesives, providing
a more continuous connection between the beam and plate and thus
reducing the relative motion and the attendant damping. Oils with
low viscosity restrict the relative motion to a lesser extent and
may contribute some energy losses due to their being "pumped" back
and forth by the relative motion.

It is likely that the higher damping obtained with low vis-
cosity oils for plate flexural half-wavelengths that are greater
than the bolt-spacing (i.e., at frequencies below about 1250 cps)
is associated with interface shearing motion resulting from the
beam and plate bending in unison, somewhat like a laminated beam.
This type of bending is not likely to occur at the higher frequen-
cies, where the plate half-wavelengths are less than the distance d
between connectors.
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Figure lib illustrates the effect of introducing small beads
(approximately 1/16" diameter spheres) of a very soft and tacky
viscoelastic substance (Daubert Chemical Company's "Quietape"
material) between the plate and beam before assembly. These beads
were placed midway between the bolt locations and were squashed
into about 1/4" diameter disks by the assembly process. The effect
of these beads is found to be very much like that of the 12,500
centistoke oil; they evidently restrict the relative beam-plate
motion to a much greater degree than they contribute to energy
dissipation by virtue of their internal losses. The viscoelastic
beads provide slightly more damping than steel washers at the same
location (See Fig. 10a), undoubtedly because the beads are softer,
more adhesive, and of a more dissipative material.

Effect of Surface Finish - Figure llc shows that changes in
surface finish affect the damping contributions of beams only
slightly, and that smoother finishes tend to result in increased
damping. This result is somewhat analogous to that obtained for
lubricants; less viscous lubricants and smoother surfaces both
facilitate relative motion and produce greater damping.

Effect of Beam and Plate Materials - The results of damping
measurements carried out on similar steel and aluminum plates,
each with attached steel and aluminum beams are shown in Fig. 12.
The damping contributions made by the steel and aluminum beams,
when attached to the steel plates, are seen to be very nearly the
same. On the other hand the two beams attached to the aluminum
test plate are seen to act somewhat differently. (Data for an
aluminum channel are shown here, since it matches the stiffness
of a solid steel beam more closely than would data for a similar
aluminum beam of solid rectangular cross-section.)

Effect of Ambient Atmospheric Pressure - The data summarized
in Fig. 13 pertain to a plate and beam configuration that was
chosen to fit a small available vacuum chamber. This configura-
tion consists of a 1/64 inch thick aluminum plate (a thin plate
was chosen to provide good resolution of the damping data) of
roughly rectangular shape with 20" x 14" overall dimensions, with
a 17-inch long aluminum beam of 1/4" x 1" rectangular cross-section
attached approximately diagonally by means of six 6-32 bolts spaced
3 in. apart and tightened with 4 in-lb of torque. The test plate
was suspended in the vacuum chamber from strings attached at two
of its corners and to support columns mounted on the floor of the
chamber. Excitation and accelerometer arrangements similar to
those employed previously were used, but within the vacuum chamber.

The upper portion of Fig. 13 indicates a dramatic dependence
of the damping contribution of the beam on ambient atmospheric
pressure. At one atmosphere (760 mm Hg) the average loss factor

12



contribution of the beam is about 0.008, whereas at 1 mm Hg it
is practically zero. Curiously enough, somewhat higher damping
than at 760 mm was found for a pressure of 400 mm. (This is also
true for pressures of 200 and 100 mm, but these data points have
been omitted from Fig. 13 for the sake of clarity.) One may also
note, incidentally, that damping peaks again occur essentially at
frequencies at which the bolt spacing is an integral multiple of
the plate flexural half-wavelength.

The data shown in the lower portion of Fig. 13 indicate that
the damping behavior of the plate in the absence of any attached
beam is unaffected by changes in ambient pressure; the changes
apparent in the upper portion of the figure must thus be attribu-
table to changes in the action of the joint.

Results; The Dominant Mechanism

From the data presented in the previous section one may
conclude that the damping of point-connected structures in the
frequency (or plate-wavelength) range studied here is

1) markedly dependent on:

a) the ratio of connector spacing to plate flexural
wavelength

b) the presence and viscosity of interface lubricants

c) the presence of restraints on normal relative motions
of mating surfaces

d) the ambient atmospheric pressure

2) relatively slightly dependent on:

a) the smoothness of the mating surfaces

b) the beam and plate materials

3) essentially independent of

a) interface pressure (bolt torque) and connector details

b) plate thickness (except insofar as thickness is related
to wavelength at a given frequency)

c) beam mass and stiffness, as long as the beam is con-
siderably stiffer than a plate strip of the same width.

4) essentially proportional to

a) total effective beam length

b) beam contact width.
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These observations indicate rather clearly that the dominant
damping mechanism here is not associated with interface slip or
friction. Rather, damping appears to be primarily due to a
"pumping" of air, produced by relative motions akin to slapping
of the plate surfaces against adjacent beam surfaces. The fact
that these motions are greatest midway between adjacent connectors
and very small near the connectors is consistent with the present
and earlier (Ref. 17) observations that the damping is practically
independent of the connector configuration (e.g., that bolts,
rivets, and spot welds all produce the same damping).

The previously cited linearity of the experimentally ob-
served damping also points toward the plausibility of an air
pumping mechanism. Damping due to interface slip is inherently
amplitude-dependent, and would manifest itself in terms of non-
linearities. The analysis of normal relative beam-plate motions
presented in Appendix III leads to dependences on the ratio of
fastener spacing to plate wavelength which are in agreement with
that observed for damping, thus further corroborating the primary
importance of normal relative motions.

PREDICTION OF BEAM-PLATE DAMPING

The previously described information concerning the important
parameters, some theoretical considerations, and the considerable
amount of empirical data that have been amassed, make it possible
to develop a method for estimating the damping of any beam-plate
system. The following pages deal with the basis for this method
and with the development and presentation of pertinent charts.

Absorption Coefficients

The absorption coefficient of a beam attached to a plate is
an extremely useful concept, which was first introduced by Heckl
(Refs. 17, 18) in direct analogy to the corresponding quantity
in room acoustics. The absorption coefficient of a beam is de-
fined as the fraction of the bending wave energy impinging on
the beam which is dissipated, and thus is intimately related to
energy dissipation due to the attached beam.* Heckl has shown
that the absorption coefficient y of a beam of effective length L
attached to a plate of surface area S is given by

*One may alternately define an absorption coefficient which

accounts both for the energy transmitted past the beam and the
energy dissipated by it. The definition used throughout this
report involves dissipated energy only.
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= r2 S (n-o) (2)

where T1 denotes the loss factor of the plate in absence of the
beam, q the loss factor of the plate with the beam attached, and
X the average wavelength of bending waves on the plate. All of
the quantities y, T1, I , and ? refer to the frequency band being con-
sidered. The wavelengeh X is related to plate thickness h, fre-
quency f, and longitudinal wave velocity cL in the plate material
as

X = V1.8 h cL/f (3)

The validity of the absorption coefficient concept and of
Eq. (2) has been demonstrated previously (Ref. 17). Additional
verifications of the linearity of the damping and of the inde-
pendence of y on total beam length L have also been obtained in
the course of the work described in the previous section (See
Fig. 4).

It is important to recall (Ref. 17) that the absorption
coefficient concept as previously discussed must be modified for
beam segments that are shorter than a wavelength (such segments
produce significantly greater absorption coefficients) and for
beam segments placed at or near nodal or anti-nodal positions.
Significant nodal and anti-nodal behavior occurs only with narrow-
band excitation; beam segments near nodes may then be expected to
result in lesser, beams near anti-nodes in higher absorption co-
efficients than those measured in broader frequency bands.

As mentioned previously, the absorption coefficients con-
sidered here account only for the dissipation of energy by the
attached beams. They do not account for energy conduction past
the beams, such as from one panel (e.g., the panel whose damping
is of interest) to others attached to it. The resonant or gross
decaying response of an entire array of panels with attached
beams depends essentially only on the energy dissipation in the
beam-plate joints, whereas the response of an individual panel
of the array depends on energy conduction as well as on the afore-
mentioned dissipation.

Reduced Variables; Loss Factor Estimation

The previously discussed dimensionless absorption coefficient
permits one to describe the damping contributions of attached beams
of all lengths in simple form, subject only to the limitations of
the absorption coefficient concept. The empirical observation that
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the damping contribution of a beam is roughly proportional 
to the

contact width w of the beam may serve as the basis for defining 
a

reduced absorption coefficient, which is practically independent

of beam width and which should again result in more compact pre-

sentation of data. Such a reduced absorption coefficient may be

defined as

Tr = (Wo/w) , (4)

where w0 denotes an arbitrarily chosen constant reference width.

It has been observed experimentally (and suggested theoreti-

cally) that the damping action of beams attached to plates depends

on the fastener spacing to wavelength ratio d/"\, rather than on

frequency itself. Thus, by plotting the absorption coefficient

data against d/^ or against a function of d/^ one may hope to 
be

able to present all of this data in compact form. Since the user

of damping information may generally be expected to be more in-

terested in dependences on frequency than on wavelength, it appears

useful to define a reduced frequency f r as

f= f(h O/h)(Lo/cL) (d/do )2

0 2 d 2 ". h L (5)(fo 2()d2(5

0

where the subscript o denotes arbitrary constant reference values.

Figures 14 and 15 present the previously discussed data per-

taining to unlubricated and unbonded joints at one atmosphere

ambient pressure in terms of reduced absorption coefficients

plotted against reduced frequency. Figure 14 summarizes data

obtained for a single beam width, but for three plate thicknesses

and three bolt spacings. Figure 15 presents data for three beam

widths, two plate thicknesses, but only one bolt spacing.

The larger shaded area in both of these figures represents

the region into which fall all of the considerable body of data

resulting from measurements made on 1/32-inch thick plates with

1-1/2 inch bolt spacing. The smaller shaded area similarly per-

tains to 1/16-inch plates, again with 1-1/2 inch bolt spacing.

These shaded areas encompass data pertaining to several bolt

torques, total beam lengths, beam cross-sections, surface fin-

ishes, and beam and plate material combinations; these variables

are considered to have relatively little effect on damping.
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The curves shown in Fig. 14 represent the extreme damping
values obtained for three values of torque (including 1 in-lb,
which results in a relatively loose Joint), for bolt spacings
of 3 and of 6 inches.

Figures 14 and 15 indicate a considerable scatter in the
total body of data presented, but do indicate a trend from
which one may hope to be able to estimate a likely absorption
coefficient value for a given beam-plate configuration at a
given frequency. The data for constant plate thickness are
seen to cluster more closely together than does the entire body
of data. This clustering might indicate a plate-thickness ef-
fect which is not taken into account by the reduced variables
considered here. In using these figures for damping prediction
purposes one would obviously do best to concentrate on those
portions of the available data which correspond most closely to
the case with which one is concerned.

In order to estimate the loss factor I of a plate of area S
and thickness h, to which are attached a number of beams (or
other stiff structures) one may use the relation

+ 7- i, (6)

which follows from Eq. (2). Here y. represents the absorption
coefficient of the ith beam element, and L represents the effec-
tive length of that element. The summatioA extends over all of
the attached beam elements.

Values of 7y for given plates, frequencies, fastener spac-
ings, and contact widths may be estimated from Figs. 14 and 15.
The plate wavelength N may be calculated from Eq. (3) or, for
steel or aluminum plates from

N(in) = 6loAh(in)/f(cps) .(7)

The loss factor fl of a plate in absence of beams may gener-
ally be taken as the loss factor of the plate material. Loss
factors of many materials are available in the literature (Refs.
1, 2, 27 and 28). Some measured values for 2024 T3 aluminum
plates appear also in Figs. 2 and 3, but these may include some
minor damping contributions from the supports. In general one
may expect that with several attached beams the contribution of
rj to the total damping I will be far overshadowed by that of the
b8ams, so that 1 0 may often be neglected in practice.
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It may be useful to state once more that Figs. 14 and 15
pertain only to beam-plates systems surrounded by air at atmos-

pheric pressure with conventional (unlubricated and unbonded)

point-connected joints. At present insufficient information is

available to permit one to extrapolate these estimates reliably

to higher or lower pressures or to other ambient gases. It is

also important to keep in mind that the suggested estimation

approach does not account for energy transmitted to structures

other than the plate considered or to fluids in contact with the

plate (i.e., acoustic radiation). For plates in contact with

air the damping due to acoustic radiation is generally consider-

ably smaller than that due to attached beams; for other ambient

media, notably liquids, this may not be true.

PLATE-PLATE JOINTS

The damping produced by plate-seam joints was studied in

order to obtain information concerning the mechanisms responsible

for this damping and to obtain data from which one may estimate

the damping contributions made by plate seams in practical struc-
tures.

Exploratory Studies of Bolted Seams

Relative motions occurring at a single-row bolted plate seam

in a 1/32-inch thick aluminum plate having the shape sketched in

Fig. 16 were briefly examined with the aid of a stroboscope while
the plate was being driven sinusoidally at relatively low frequen-
cies. Similar observations were made on a somewhat smaller 1/8-inch
thick rubber plate. The relative motions observed were found to
be essentially of a slapping nature, (i.e. perpendicular to the

interface surfaces), as was found for beam-plate joints. Again,
no interface shearing motions could be observed.

The high-frequency behavior of plate seams was studied by
means of light-weight accelerometers attached to the plate portions
at several locations halfway between two adjacent bolts, with-the
accelerometers' sensitive axes perpendicular to the plate surface.
The plate was driven sinusoidally, at various frequencies and ampli-
tudes, and the waveforms of the accelerometer signals were displayed
on oscilloscopes. The behavior of the plate seams was again found
to be much like that of beam-plate joints. All accelerometer sig-
nals appeared like pure sinusoids at the driving frequency for
small excitation amplitudes, exhibited distortion near the maxima
above a certain driving amplitude, and became more generally dis-
torted for even greater amplitudes.
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Parameter Studies of Bolted Seams

A number of measurements were made using aluminum test plate
configurations having either one or two seams, as sketched in
Fig. 16, and the experimental arrangement described in Fig. 1.

Bolt Torque - A brief series of measurements were carried out
on a 1/32-inch thick aluminum plate with single-row bolted joints,
using 1-inch overlap, 1-1/2 inch bolt spacing, and bolt torques of
4, 12, and 20 in-lb. The damping contributions of the joints were
found to be virtually the same for the three torque values that
were used. The damping produced by bolted plate seams thus appears
to be independent of bolt torque for all practical purposes. This
result implies that the damping of multi-point-fastened seams, like
that of beam-plate joints, is essentially independent of fastener
details.

Seam Length - From Figs. 16-18 one may discern that the absorp-
tion coefficients of the three joint types studied are independent
of total seam length. The absorption coefficients shown here were
again calculated according to Eq. (2), from measured values of the
loss factor q of the continuous plate and of the loss factor T) of
the plate inc8rporating the seam under study. The effective seam
length L is here taken as twice the actual total seam length, in
accordance with the previous discussion of effective length, and
since a plate seam can by definition not occur at the edge of a
plate.

Bolt Spacing and Plate Thickness - Figure 16 summarized ab-
sorption coefficient data for single-row bolted lap joints in
plates of two different thicknesses, and using two different bolt
spacings. Figures 17 and 18,present data for two types of double-
row joints; each of these figures pertains to a single bolt spacing,
but to two plate thicknesses. All three figures are plots of
absorption coefficients vs. reduced frequency, as defined by Eq. (5).
The good superposition of the various data portions of Fig. 16-18
thus indicates that damping produced by point-fastened plate seams,
like that produced by beam-plate joints, depends on the wavelength
of bending waves in the plate rather than on frequency per se.

Parameters Not Studied - In the present study no experiments
were undertaken to ascertain the effects of 1) reduced or increased
ambient atmospheric pressure, 2) overlap width, 3) joining plates
of different thicknesses. The effects of these parameters need to
be investigated further if one desires a complete picture of the
damping contributions made by bolted plate seams.
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Several parameters that were studied for beam-plate systems

were not studied for plate-seams, because these beam-plate studies

were primarily aimed at discovering the dominant mechanism and it

is felt that the dominant mechanism here is the same. These par-

ameters include 1) spacers between joint surfaces, 2) restraints

on relative motions, 3) interface lubrication, 4) surface-finish,

and 5) materials.

Welded Seams

A number of measurements of the damping contributions of

continuously welded joints in aluminum plates were undertaken.

Butt joints and 1-inch and 3-inch wide (doubly welded) lap joints

were tested, using the same plate geometry, seam arrangement, and

instrumentation as for bolted joints. No measurable damping con-

tribution was observed for any of the welded joints studied.

Dominant Mechanism; Damping Estimation

The similarity of the damping behavior of bolted plate seams

to that of bolted beam-plate joints leads one to suspect that the

dominant damping mechanism is the same in the two cases. Thus,

although it was not proven conclusively (in absence of data ob-

tained in vacuum), it appears likely that the damping produced by

point-connected plate seams is produced primarily by the pumping

of air that results as the mating joint surfaces between fasteners

move apart and toward each other.

The absorption coefficient concept and the reduced frequency

idea (i.e., plate flexural wavelength dependence) have been shown

to apply to plate-seams, as well as to beam-plate joints. The

damping of plates incorporating multi-point-fastened seams may

thus be estimated with the aid of Eq. (6) and the absorption

coefficient data of Figs. 16-18.

The absorption coefficient of welded plate seams was found

to be zero for all practical purposes. The loss factor of a plate

incorporating welded joints thus is the same as that of a similar

continuous plate.

20



0.

0

C\j(I Z- . )(

LL-

<i

wl Y

_

CDf

w cr
_ 

w
-J L.J

z w w

wr c -JH
I-o

2 U)

zz
w L

C-L-

w (w

I-0

w <,
/M

w w

-i
- cr-...

21w



0 0
'- OJ H- .-.r , .-..
o H- L( I ,-- H-- 0

a) LC' 'DO L.\ C..) 0 ("l (Y")

0

",-It

0

0
4-)

*0

0 94

4-3 0 ro a) a)
-I V) C () Cli 0 r-4 C

4 CO ciC
a)cd 4-D cui

0 gf r.
E-i -4 cli 4-),

4- 0 cii 0 0 4-)
Cd Q H -4 02 0 a)

O >z 0r0

0 ,4 (D : ,4

4

4-)

022

a) 4-

4) 0 a) 0
() 0 *i4..) >
:F: 4 4  Cdi a) a)

VA4 F- 4) P4
r-i 1) a) 0

0 4- H C)

cd 0 02

COi 4-) H- a) 2 )
C) H0 i- ) C

a) r- ~ 0 0 C)

22



0
0

0-
_0

too
0

H 0 0

0 W
<n 0

< 0 NJ H
0>

-0
0 <

_ _ _ _ _ _ _ _ _ _ _ _ 0 Z -i

O a
NO z

0 La

z)
0 o H-0 X

0  0
cm C)

0

O < 0

0 w

< Z LJ - o 0-

0---- < i. 0

0.00 m < U- N

N
0 - ON 0

o0 0 0 0 0
o0 0 0 0
O0 0 0 0 0

0 -LNClislHiNOO8 1 OVA SJ 991 8010V SSO-1

23



0

yo

00 z
0~

-0 0
o0 z

0 00 W
<O 0 0V

a10 w

w ow0 0

-0 >
0;,

-~~0 zl C
0w <
OD WLL L

____/ 0 Wn
0 D

o 0 L L

80 H

0w0
N>) LL)

00

co0
In w

<LL

0

< LL-m '0 (.

0W 0 0 0
Ll0 0 OD 0C

0 0 0 0 0 0

I.Lz NoIIfl a--J<NO
C\j. ~ SS \1 Q-± . ssoiJ

ro 0 f) I4



2xIO - 3

0
'

£ 10- 3  r,

0
H 8

6_

I
z
o 4

0 4

0

0

U-

o TOTAL EFFECTIVE BEAM POSITIONS
-i BEAM LENGTH,L(IN) (FIG )

10-4 0_ 66 C

3 A 131 V2 B,C
0 164 A,B,C
0 189 A,B,C,O

2 -1/16'AL PLATE

BOLT SPACING d:I = /2"
z I"x 1/4" BEAM SECTIONSZ

-- 41N-LB BOLT TORQUE

Lw -5
0- 10
zo 8 A__ _

m 6

I-

Z 4
0

U "
0

o A

FIG 4 FETO OTLBA LEGHO

22

IL
U,

0
-J -6

24 682 4 6 8
100 1000 10,000

THIRD OCTAVE BAND CENTER FREQUENCY (CPS)

FIG. 4 EFFECT OF TOTAL BEAM LENGTH ON
BEAM-PLATE DAMPING

25



a. BOLT TORQUE 25 IN.- LB
0.01c - - - - - - - - - - - - -

0.008 I

i d= 6 IN.

BO LT SPAC ING ._-,
d=3 IN.- \I

0.004----

I."

oL \-d 11/2 IN.z - * -.-. I [
o b. BOLT TORQUE 41N.-LB. NJ
I- 0.008--- - - w

-d= 6 IN.

z d= 3 IN.--k

0.004,,0 /

tO /I--d 11I/2 IN.
C,/

0

-ooo __ lIfflIll
c. BOLT TORQUE ilN.-LB

0.00N= 6 IN.

0 . 0 
,o I, V N'

0.00 ANI" II1
0d =- 1/2 I N

32 50 80 125 200 320 500 800 1250 2000 3200 5000 8000 12500 2000025 40 63 100 160 250 400 630 1000 1600 2500 4000 6300 10000 16000
THIRD OCTAVE BAND CENTER FREQUENCY (CPS)

FIG.5 EFFECT OF BOLT SPACING ON LOSS FACTOR
CONTRIBUTION BY BEAMS. (1/16 ALUMINUM
PLATE AS IN FIG. I, ALL BEAMS ATTACHED)

26



. BOLT TORQUE 25 IN.-LB I

I- d=61N.

0.008 - 1--- --

BOLT SPACING

0[

z
0 b. BOLT TORQUE 41N.-LB

- I \0.008- -- " \
, I

d=61 N.-
0.006- - --

z
0

0.00-
o d=31 N.

0 d 11/2 IN.
< 0.002 -.. -

U)BL0 0[-L

-' 0.008 - -
c. LTORQUE iIN.-LB

O.d0 6 1
0.004 --- I I h 1l

d 11/2 IN. -

0.002---------------------1 o.d 0 ; " d= 3 IN.

32 50 80 125 200 320 500 800 1250 2000 3200 5000 8000 12500 20000
25 40 63 100 160 250 400 630 1000 1600 2500 4000 6300 10000 16000

REDUCED THIRD OCTAVE BAND CENTER FREQUENCY 
(CPS) = f(d/3)

2

I I I I 1

1/ 1/4 1/2 I 3/2 2
d /X

FIG.6 EFFECT OF (BOLT SPACING/PLATE WAVELENGTH)
RATIO ON LOSS FACTOR CONTRIBUTION BY BEAMS

27



0 0
0 00

=-\ No C1iN

0 (n 0

0 0
9 00-

C) 0
0 0

-00LLJ 0 -

0 ~0
0 CY 0 C/

O't Ld0 t 4-
0 .0 2L

00 0___ <L

to Lii I

0 0~

0~
000 O=

0 - Li
C\ ou Ldi..

cD UJ

N > 0 LL -f0

0 00 0
o 0 In0
60 0 Ll

NO,fb-±O 0 O0L~ OUO

01, oq28



0

j00

HL 0
-)-. a. - 0- q

*0(0o.I -< .00. 0-
0

* .- Coo
0

< 141)_

a. - O0

~ 0,

K) 11I<

000~*i opw 0_
C4 0

\jC\j 0 LLr

cr 0
* L) 0 _

CD 0

0 o~

0~o z ~
0 0

N\J>0 LL 0 H
o1 (f oZ
(r CO 

NH 0 ) L

Z zzWUJ-JN \I z LZ Z <U) zD - 0 _Q'
rT . U Z I -I- M:O C1(-

<z0 w

< c N ro i.

a - 0 N 0 D

o50 0 0 )

0 0 Q 0
o0 0 0 0

0L- NOI-Lnl8i1NOD 8IOiOA SSO-1

29



0

Q 0 0

02

0D LL Q

0~L -N 0 V e
zU 0 f

2, 0 ox Li.
I- 00Z -II 00 f 0

0 0 C 0

C) Otc cf- LLJ
Li~~~j )() )(X F-ILi

0Pen 0 <
~j~j< 0

to 0

00 0 0 

0 x 0 f0L4~~~~-LLL' N0-nIdN~ z0~1A S

300



0
V')
0NO

0 -0
0 X 0

0 cr

oc 0 i
OD0

oc 0

Olt

00

0 -
>0 00 <

0 Dw Ldi

0(_ O2 0 0

-x I

0 00, cn

U0 C)~

(tI)

-40- cr

0o 00\ m -

N>
N0 <

0 0
0 L) 0L 9

) (0 0 0

NOIfl8 -9O ui~ SSO

U) (f) D31



0- 0
X 0 0 0 L

IL0I

00-
O X 0 o

Ow~ L. cr
0

x') 0

00

-0---

-ocr
x~~0> 0 0 -0t L z

0
1L\j -r

0 x 00 (n H 0

h o - i( N LU -(

____~ o__ LD_-___

C\j >.. N 
0

OD Z - N-

XOcn 02~ _ - -
o~O00 LULLJ

0 U-

~~0N-~ ozm~ uoui

___ _< 0 <L:

NL >- CN\jN
0n 0 0 

9~~~ o
0) 0 n u( 0 < 0j

)0 u -L ZOIlI O UO)\ SSO0

32LL



0

_ _ O
-i--0

- -0 o

o LU0

0 LL 0 W

LU~~~~~ LU L_j 0  
_ _

0-U~ 00

S0% 000
ow. z 0L9

0~~ z0 LLL NOIflBdiNO ~JIZVJSS 0

33W



1.6 10- 1 140 1 1 1 /64 X 20 1x 14" ALUMINUM PLATE
p40 mmHg 17xl X )/4 "AL BEAM

BOLT SPACING d=3"

o 1.2 4IN-LB BOLT TORQUE
-t0-1. X =PLATE FLEXURAL WAVELENGTH

I- 0.8

cr

0.4

u 
-0

0 Zi2mmmHg

d=X2 -A4 X22

ui 0.8 1

0

0 0.6

U)

0
- 01

125 200 320 500 800 1250 2000 3200 5000 8000 12500
100 160 250 400 630 1000 1600 2500 4000 6300 10000
THIRD OCTAVE BAND CENTER FREQUENCY IN CYCLES PER SECOND

FIG. 13 EFFECT OF VACUUM ON BEAM-PLATE DAMPING

34



0

oo
N0

0 ( j

0 ~0 H

0
0 w

0 0 F-

0 U

0 W r-

-0 o z
tv0

U-n ()

0 i
0 U)0

0 0 w
In z

0 (n LW
0 0L

0 -

_ _ _ _ _0 ___ _

00L

LDW

- W

C,%)

ww cr i

-- 0-r
r- -

0

0. fn (D -0 0

V) 00

wNIIJO NOW-O8 39
-ZZ N (DID ( > (1 0 05



0 U,

00 c
0~
wo z

Owwo LLI
*0 Cl)M

0 w w

0 U-

OCY
00

N8
C)D(

0>
0~ 0 U

0 L=

0 Lu

00L

U) if) <
IL, _

woZ CDj.N N <

- U r r ) U) Z LA

-) 0 .- ~
ww-~I < OI) O

I- O WZ (D (D ( \ \ CJ a \

(0K LC)- 0

000 0 0 0J
,( XNIL]O NOLLdHOS8V .)nol

w c

00 U-36



0
___ ___ _ _ ___ ___ ___ ___ _ ___ ___ ___ ___ ___ ___ __ 0

0
00
NYo

0
O w
0-
In
NO0 NJ

0D

0L~ oI _j

0- 1
0
N) 0 l

ON -r- i

Off ) 0 
0 c
N0

0

0 Z
O LLJ

LLWLL ____

oj 0
U- OD O o o0F

0L CY 0
Z 0 0

o- g!f) ITt( LL to <
ow-

00

IC u 0
r-

I.--
0 L'0

cn I co -
Wf LLJ 'n 0L

0n o1 0 o6
XL a_I3JdO NOi al B0

37 U



0

- o
ON
o0 e8in 0

Ow 0
_ _ _ _ _- _ _ _ O-

C,) i4- Ow
O

N

00

Ow

OZ 0

0 I- > L.L

U)0 L)Jc w
0) 0 :) (DL

0iLL CY%J

OD W

(D LL~D -

Q-~~-L0

_ __ __ _ 0 0- r'I

Co L6 L 0 0n
X~~~~~ UN-IiO NIdO8

538



0
('o-0
00 ~
0~rI

00

0

coo ,7.1-

0 0 L

-wo-

-~~~I , m '?,o~oqt

0

-""Z to 11 -

0H

I I- - F- t

z J - --_

z ON

0 ,0

0_

I- cJ LUT Lii 0 -

o,O, cn m _

00

,nVo

0Z z

~~~~~ DC~ ,L - _ _

cr

L In 0

It

u- U. LL a: -- i 0

_j 00

L I E _ _ _ _

_j, .. 311.. -cm0 <OJd O

39



PART II

EDGE-RIVETED STRUCTURES AT LOW FREQUENCIES

PURPOSE AND APPROACH OF INVESTIGATION

Purpose

As has been pointed out previously, Mentel ; studies (Refs.
12, 14) of the damping of panels due to their e-ge supports were
primarily concerned with highly idealized configurations and with
supports incorporating viscoelastic inserts; they did not address
themselves to determining the mechanisms that dominate the damping
of panels whose edges are fastened realistically by bolts or rivets
to supporting structures. Study of this mechanism was the prime
purpose of the investigations discussed below.

Approach

The study reported here consists of 1) a series of experi-
ments aimed at discovering the dependence of the damping under
investigation on frequency, amplitude, and interface pressure;
2) of predicting these dependences theoretically for postulated
mechanisms that might logically be present; and 3) of comparing
the theoretical predictions with experimental results.

This approach permits one to determine which mechanisms
cannot be responsible for the observed damping, and might help
one to decide on "critical" experiments to distinguish which of
the several mechanisms for which theoretical predictions are
compatible with experimental results actually dominate the damp-
ing of practical joints.

EXPERIMENTAL ARRANGEMENT

Test Models

For the sake of experimental and theoretical simplicity,
it was decided to work with narrow plate strips fastened only
at the two shorter edges, rather than with, say, more nearly
square panels riveted at all edges. It was felt that use of
narrow strips would preserve all the salient features of edge-
riveted panels, while reducing possible effects of acoustic
radiation, assuring that flexural waves on the panel impinge
perpendicularly on the supports, and resulting in modal prop-
erties more amenable to calculation.
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The measurements reported subsequently were carried out on
aluminum panel-strips with the following dimensions:

Panel "A": 1/16 x 2 x 8 in
Panel "C": 1/8 x 2 x 16 in.

These panels were attached to test jigs, as shown in Fig. 19.
Two jigs were constructed (one for each panel size); Fig. 19
shows the larger jig to approximately half scale, the smaller
is merely a shortened version of the one shown.

The test jigs were designed to be as rigid as possible, in
the hope of eliminating the support elasticity variable from the
studies. The "supporting jaws" were made separately from the
main blocks, so that they could be changed, e.g. for determina-
tions of the effects of support width or sharpness of edges.
The slots in these jaws permit one to insert torque wrenches,
so that one may have some control over interface pressures.
Throughout the work reported here #6-32 stainless steel nut-
bolt-washer assemblies were used, whose torque-tension charac-
teristics have been investigated as described in Appendix II.

Measurement Methods and Instrumentation

Two types of damping measurement techniques were used: the
relatively conventional one of measuring the rate of decay of
free vibrations, and the rather new one of measuring the power
dissipated under steady state forced vibration conditions.

For the rate-of-decay measurements the panel-and-jig
assembly was suspended from a suitable support by means of long
strings. A light piezoelectric accelerometer was attached to
the panel near its center, and care was exercised to prevent
the accelerometer cable from affecting the panel motion. The
panel was excited by tapping it lightly with a finger or small
wood block, and the resulting decay rate was measured by means
of the instrumentation arrangement indicated in Fig. 1.

Steady-state power dissipation measurements were performed
with the relatively newly developed instrumentation system shown
in Fig. 20. An important advantage of this type of measurement
is that it permits amplitude and frequency to be adjusted inde-
pendently, so that effects of these parameters may be studied
most readily.

Actually, the mechanical power supplied to the test system
was measured, and not the power dissipated. However, at steady
state the power supplied (averaged over a cycle or over many
cycles) is equal to the power dissipated. The power supplied
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to the system was determined by means of an impedance head bolted
to the test structure (Fig. 20). This impedance head is a compact
device which generates two voltages, one proportional to accelera-
tion, one to force. The instrumentation indicated in the figure
integrates the acceleration signal to produce a velocity signal,
multiplies this by the force signal to obtain a voltage propor-
tional to instantaneous mechanical power. Time-average values of
this voltage may then readily be obtained by use of an rms volt-
meter.

The concept of this power measurement arrangement is simple,
but it involves many practical instrumentation difficulties.
These include the usual loading effects of one piece of equipment
on the other and the presence of hum and other extraneous signals.
Elimination of these effects and the matching of the phase charac-
teristics of all portions of the two signal channels are of par-
ticular importance in measuring small amounts of damping, since
one then must essentially measure small phase angles.

Figure 20 and the instrumentation list accompanying it show
the best instrumentation system devised in the course of the work
being reported here. It is the result of a considerable amount
of effort and is believed to be the optimum presently possible
without using markedly more precise (and expensive or specially
built) components.

The summing amplifier shown in Fig. 20 permits one to sub-
tract from the force signal a voltage proportional to the inertia
force associated with a constant mass; e.g. with the mass of the
part of the impedance head between the force gage and the test
structure. Although a pure mass cannot contribute to energy dis-
sipation, this subtraction was introduced here in order to provide
a signal proportional to the actual force acting on the test struc-
ture for the sake of being able to display on an oscilloscope this
actual force vs. any of the other variables of interest, as well
as for the sake of increased precision.

EXPERIMENTAL RESULTS

Amplitude Effects in Tight Joint

In order to study how power dissipation in a tightly bolted
joint varies with amplitude at constant frequency the test jig
with panel "A" attached was clamped tightly to a column of the
laboratory building, with the plane of the panel vertical. This
arrangement permitted driving the test panel at significant ampli-
tudes relative to the jig and avoided "biasing" of the panels by
gravity. The impedance head was carefully aligned normal to the
surface of the panel.
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Figure 21 shows how the driving-point velocity and power

dissipation of a tightly bolted panel "A", driven at its third

mode, varies with driving force amplitude. The resonant fre-

quency of this mode was found to be independent of amplitude,

so that Fig. 21 pertains to a constant frequency. The third

mode was selected for these studies because it was found to be

the lowest one for which the response quantities could be meas-

ured with the available instrumentation. The mode number was

ascertained by stroboscopic observation of the mode shape and by

comparison of the observed with calculated resonance frequencies.

From Fig. 21 one may observe that the driving point velocity

remains proportional to driving force up to a certain level, the
"nonlinearity threshold". At a level of excitation somewhat

above this threshold there occurs a response discontinuity, which

was found to be associated with the occurrence of gross slip at

the joint. When the drive was turned off after an experiment at

such high excitation levels, one found that the plate did not

return to its flat equilibrium position, but remained bowed. No

such bowing was found for excitation below the "discontinuity"
level indicated in the figure.

It is also interesting to note that the curve of power dis-

sipation vs. driving force is essentially parabolic for low

amplitudes, deviates from the parabolic nature at high amplitudes,

and also exhibits a discontinuity where the velocity curve is

discontinuous. The dependence of power dissipation on amplitude

is shown more clearly in Fig. 22, which is essentially a cross-

plot of the information in Fig. 21. The fact that the slope of

the power-velocity curve is 2 indicates that the power dissipated

varies as the square of amplitude, as in classical viscously
damped systems or other systems with amplitude-independent loss

factor.

Amplitude Effect in Loose Joint

In order to determine what effects, if any, interface pres-

sure at the support may have on the character of the power dissi-
pation characteristics, further measurements were made on a test

panel that was more loosely bolted to its supporting jig. These

measurements were carried out in the same manner as the previously

reported ones, except that panel "C" was used here. Use of panel

"C" instead of "A" results in a shift of the resonances to lower

frequencies where the instrumentation has greater precision.

Figure 23 shows how the driving point velocity and the power

dissipated at the third mode of panel "C" vary with driving force.

This figure is analogous to Fig. 21, but pertains to a different

test panel and a lesser bolt tightening torque. The character of
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the curves of Figs. 21 and 23 is roughly the same. However, un-
like for the tight joint of Fig. 21, the resonant frequency of
the loose joint exhibited an amplitude dependence, as indicated
at the top of Fig. 23. The resonant frequency was found to de-
crease with amplitude until about the onset of nonlinearity, to
remain constant in the region of nonlinearity, and to increase
again for amplitudes beyond the response discontinuity.

Figure 24, which is a cross plot of Fig. 23 and is analogous
to Fig. 22, shows that here the slope of the power vs. velocity
curve is 2 5 i.e., that the power dissipated here varies as
(velocity)2-5. Thus, although the energy dissipating action of
the previously discussed tight joint could be likened to ideal
viscous and amplitude-independent damping, this is not the case
for the present looser joint.

Effect of Frequency (Mode Number)

The effect of frequency or mode number on damping was inves-
tigated by use of both the decay rate and power dissipation meas-
urement techniques. Results from both types of experiments on
panel "C" are summarized in terms of loss factor in Fig. 25.
Decay data at frequencies below the fundamental (105 cps) were
obtained with lead masses bolted to the plate center. Figure 26
shows the power dissipation data* on which the corresponding loss
factors indicated in Fig. 25 are based. Conversion of these data
to loss factor form was accomplished by use of Eq. (14). More is
said later about the discrepancy between the results obtained
from decay and those from power measurements.

*For the measurements reported in Fig. 26 the test jig was sus-
pended from strings instead of clamped to a column (to reduce
possible energy losses via the attachment). All of the data of
Fig. 26 are seen to fall reasonably well on lines having slopes
of 2, indicating that power dissipated here increases as the
square of amplitude. The data for the third mode at bolt tor-
ques of 4 and 20 in-lb are shown as falling along two linear
segments; the offset between these is ascribed to phase shifts
introduced by changes in amplifier gain settings and indicate
a shortcoming of the instrumentation rather than information
about the mechanical system under study.
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Measurements like those summarized above for panel "C" were
also carried out on panel "A"; results in terms of loss factor
are shown in Fig. 27. Again, some discrepancy between the re-
sults from the two types of measurements may be noted. Power
dissipation data appear in Fig. 28. These are confined to the
first mode, because no measurable power dissipation levels could
be attained for the higher modes with the (small) jig suspended
from wires to reduce extraneous losses. The first mode data do
lie along lines of slope 2, as previously observed for panel "A".
No decay results for frequencies above the fundamental could be
obtained from decay measurements either; the decay there occurred
so rapidly and erratically that the available instrumentation was
unable to cope with it.

Effect of Interface Pressure (Bolt Torque)

Figure 29 summarizes the dependences of loss factor on bolt
torque implied by all of the previously presented and some addi-
tional data. It includes the results of decay, as well as of
power dissipation measurements. Although the agreement between
different measurements made for the same mode of the same panel
is not too good, one may observe that all the various sets of
measurements exhibit roughly the same trend. Increased bolt
torque appears to result in decreased damping, with damping de-
creasing at a lesser rate for higher bolt torques.

Effect of Number of Edges Supported

Figure 30 summarizes the results of a series of experiments
intended to resolve the question whether the dominant damping
mechanism in the plate strips under discussion is associated with
axial slip. These experiments consisted of two sets of decay-rate
measurements on the same test panel. In one set the test panel
was supported on the jig in the condition sketched in Fig. 19,
i.e. attached at both its ends. In the other the test panel was
attached as a cantilever to only one jaw, and the other jaw was
removed from the test jig.

In these experiments the test jig was suspended at one of
its ends from a long string. A small hand-held shaker supplied
the excitation and was moved away from the test structure when
decay was to be observed. A very light accelerometer was used,
and great care was taken to ascertain that it did not influence
the measured values. Measurements were taken at the first and
second modes of the plate as a cantilever, and at the first mode
of the panel on two supports. Measurements at frequencies lower
than the cantilever fundamental were obtained with lead weights
attached at the beam center.
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Figure 30 again indicates a difference between the character
of the damping of a "loose" joint (1 in-lb torque) and that of a
"tight" joint. The loose joint exhibits a loss factor that is
practically independent of support configuration. With higher
tightening torques, on the other hand, higher loss factors are
observed for the panel on two supports than for it supported as
a cantilever. No amplitude dependence of loss factor was observed
during the various cantilever tests, whereas for the panel on two
supports amplitude-dependent damping was observed for amplitudes
greater than some threshold value. The values shown in Fig. 30
pertain to amplitudes below this threshold, i.e. to amplitude-
independent conditions.

In order to ascertain that the previously reported damping
values are not associated with acoustic radiation or with inherent
damping of the panel material, a panel identical to panel "A" was
supported in a vise by a small stud welded to the panel center.
The panel was excited by impact, and its loss factor was deter-
mined from decay measurements, using a microphone as a sensing
device. A value somewhat less than 0.0002 was obtained.

Since one might expect two structural joints to produce twice
as much damping as one, all other things being equal, it is in-
structive to look at the data of Fig. 30 in terms of the loss
factor per joint. A corresponding plot is shown in Fig. 31. It
appears that the single joint of the cantilever configuration pro-
vides more damping per joint than do the two joints supporting the
plate in its regular configuration on the test jig. In the latter
configuration longitudinal slip at the supports is promoted by the
shortening of the projection of the panel onto the plane of the
joints, whereas with the panel mounted as a cantilever this mech-
anism for the production of axial slip is absent. One may there-
fore conclude that longitudinal slip is not the dominant energy
dissipation mechanism, at least for small amplitudes.

Critique of Experimental Results

The discrepancy between loss factor values obtained from
vibration decay rate measurements and those computed from power
dissipation data is troublesome. The decay rate technique is
undoubtedly the more reliable one of the two. It is relatively
simple, has been used extensively, and has the additional advan-
tage that each loss factor reading is based on several repetitions
of the experiment.

It is possible that a considerable fraction of the energy
assumed to have been dissipated at the bolted joints was dissi-
pated elsewhere. For example, the power dissipation measurements
that were performed with the test jig bolted to a building column
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may have been influenced by energy dissipated at the test jig
connection or by energy transferred into the column and dissi-
pated at some more remote location. It is also possible that
some energy was dissipated at the connection between the test
panel and the impedance head. (Power dissipation changes were
observed for changes in the tightening torque applied to the
bolt connecting the impedance head to the test panel.)

It is clear that resonances observed with the impedance
head and shaker attached to the test panel are essentially reso-
nances of the test panel with a lumped mass (impedance head plus
shaker armature) attached at its center, and have associated with
them different frequencies and mode shapes than one obtains for
the panel in absence of mass loads. Since the mode shapes enter
the calculations relating power dissipation to loss factor, as
discussed below, errors in the mode shapes result in errors in
the calculated loss factors. Although the mode shape properties
for panels without mass loading were used in the calculations
leading to the values plotted in Figs. 25, 27, and 29, it is
believed that the associated errors are not so large as to be
able to account for the magnitude of the discrepancies apparent
in these figures.

Although the magnitudes derived from the power dissipation
measurements reported here may be somewhat questionable, the
trends indicated by them do appear to be valid and significant.
The results of some additional experiments support this state-
ment. One set of such experiments is summarized by Fig. 32.
In this experiment the impedance head and shaker were mounted
to move vertically. A 1/2-in thick plate was attached directly
to the impedance head, and a test panel was attached to this
plate at the ends. Thus, there were no supports present which
might contribute energy leaks. The pertinent curve of Fig. 32
has the same character as that appearing in Fig. 22. (Also
shown in Fig. 22 are results of a series of measurements aimed
at establishing the "noise floor" of the system. These measure-
ments were taken with only the thick or with only a single thin
plate attached to the impedance head; i.e., without any joints
that might contribute damping. It is clear that the damping
data of Fig. 32 exceed this noise floor considerably.)

Data obtained with a stud inserted between impedance head
and test panel "C" (instead of a direct bolted connection, as
in all the previously reported results) are summarized in Figs.
33 and 34. These two figures correspond to Figs. 23 and 24,
respectively, and pertain to the same nominal experiment, except
for the aforementioned difference in the attachment. These two
sets of figures are found to agree at least qualitatively.
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ANALYTICAL RESULTS

One of the main reasons for undertaking the series of ex-
periments described in the foregoing section was the hope that
the experimental results would shed some light on the mechanisms
involved in the energy dissipation processes. By comparing how
the measured dependences of power dissipation on frequency and
amplitude vary with, the corresponding dependences obtained from
analysis of several models one should be able to obtain some
understanding of which energy dissipation mechanisms may and
which may not be of primary importance.

Amplitude-Dependences of Power Dissipation
for Several Mechanisms

In Appendix IV are derived relations between power dissipa-
tion and amplitude for center-driven and end-supported plate
strips representative of the experimental configuration shown in
Fig. 19, and for various energy dissipation mechanisms assumed
to act (one at a time) at the supported ends.

The mechanisms considered (either explicitly in Appendix IV,
or implicitly by simple extensions of results presented there)
are listed in Table II, together with the amplitude-dependences
they imply.

Frequency Dependences of Power Dissipation

The dependences of power dissipation on frequency implied
by the end supported panel strip configuration and the various
damping mechanisms are rather complicated. They are influenced
by the frequency-response characteristics of the strip, as dis-
cussed in Appendix IV, as well as by the frequency-dependences
inherent in the dissipative mechanisms themselves.

No further discussion of the frequency dependences implied
by the analyses of Appendix IV is included here, because of the
aforementioned complexity of the analytical results and since
adequate power dissipation data are not available for a suffi-
ciently wide frequency range to permit comparison of theory and
experiment.
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TABLE II

RELATION BETWEEN POWER DISSIPATION Pd
AND PLATE-STRIP MIDPOINT DEFLECTION d
AMPLITUDE Y, FOR VARIOUS MECHANISMS

ACTING AT SUPPORTS: Pd - yn

Energy Dissipation Mechanisms Exponent n

I Mechanisms associated with relative

motion tangential to interface

A. Coulomb friction

1. Rigid strip ends, slipping fully* 2a

2. Elastic strip ends, slipping over
part of contact area 4 to 6 b

B. Shear of thin layer of asperities

1. Perfectly plastic layer 2a

2. Work-hardening plastic layer >2 a

3. Viscoelastic layer 4

C. Viscous friction over entire interface 4

II Mechanisms associated with rotation and
relative motion normal to interface,
rigid strip ends

A. Coulomb friction associated with
relative motion of asperities,
motion normal to interface - a

B. Compression of thin layer of asperities

1. Viscoelastic layer 2
2. Perfectly plastic layer 1 to 2

C. Viscous friction associated with
relative motion of asperities
motion normal to interface 2

*Corresponds to Mentel's Analysis (Ref. 12).
a Value shown applies above threshold amplitude for occurrence

of mechanism.

b Depends on friction distribution.
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Relation Between Loss Factor and Power Dissipation

The loss factor T_ of a structure may be defined as the
ratio of the energy dissipated per radian (or per cycle/2w)
during steady or slowly decaying vibration to the ienergy of
vibration" W (Ref. 10). From this definition one may estab-
lish that the loss factor is related to the dissipated power
Pd as

Tis = Pd/O , (8)

where w denotes the radian frequency of the vibration.

For systems that are relatively lightly damped the "energy
of vibration" W is the total (kinetic plus potential) energy
contained in the system at any instant and is equal to the time-
wise maximum kinetic energy. If the plate-strip's deflection
amplitude distribution is given by y(x), where x is measured in
the length-wise direction, then the maximum kinetic energy of
the plate is

W W 2 fy 2 dx , (9)Wp 2

where m denotes the strip's mass per unit length and the inte-
gration is taken over the entire plate strip. If a lumped mass M
is attached to the plate strip at x=xM, then it contributes the
additional kinetic energy

M W2 ( . (10)WM 2

Thus, by inserting the total kinetic energy for W in Eq. (8) one
may write

2 Pd

C.3 [mfy 2dx + M y2 (xM)]

Evaluation of the deflection amplitude distribution y(x)
is discussed in Appendix IV. There it is also shown that for
the odd-numbered modes of beams or plate strips that are clamped
on both ends (approximating the previously discussed experimental
conditions) one finds

mfy2 dx Mb y2 (12)
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where M denotes to total mass of the beam and Y the deflection
amplitu8e of the mid-point. For an added concen?rated mass at-tached at the mid-point (as was the mass of the impedance head
and shaker armature in the previously discussed experiments),
Eq. (11) may be written

Pd 22

00b2) rms (M b+2M) (3

where V W YoI is the root-mean-square velocity of the
mid-poiN?*

Although addition of a mass may be expected to alter theresonant deflection amplitude distribution to some extent, this
alteration is expected to produce only relatively minor changes
in values one would compute from Eqs. (12) and (13).

Comparison of Support Effects on
Cantilever and Clamped-Clamped Beams

It is of some concern whether comparisons of measured lossfactor data for cantilever and for doubly clamped plate strips(or beams) can be made legitimately, and whether any correction
factors must be used in such comparisons.

An analysis presented in Appendix IV shows that the energy
of vibration of a beam mounted as a cantilever is very nearlyequal to that of the same beam in a clamped-clamped condition,
provided the beam is vibrating at the same frequency (but in any
mode**) in both cases and at amplitudes that produce the same

* Any consistent system of units may be applied to Eq. (13).
For P in watts, V in m/sec, Mb and M in pounds, and f incycleg/sec, (unitsarTs which experimental data have been pre-
sented here) Eq. (13) becomes

I = 0.35 Pd V 2 s(Mb+2M) (14)

For the shaker and impedance head used in the reported experi-
ments, M = 0.315 lb.

**Except the cantilever fundamental. See Appendix IV.
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bending moment at the supports in both cases. From Appendix IV

one observes that equality of bending moments under the afore-

mentioned conditions also implies equality of the shear forces

at the supports. One may thus conclude that damping mechanisms

that depend on the support moments and/or forces will produce

the same energy dissipation for the two mounting conditions.

One would then expect the loss factor per support to be the same

for a clamped-clamped beam as for a cantilever, for the same

support-moment. If experimental data show the loss factor to be

essentially independent of amplitude (or support moment), then

the loss factor of a clamped-clamped beam should be twice that

of a cantilever.

POSSIBLE MECHANISMS

Implications of Observed Amplitude-Dependences

By comparing the amplitude-dependences of power dissipation

predicted analytically for the various postulated damping mech-

anisms with the experimentally observed dependences one may deter-

mine which of the mechanisms studied analytically cannot dominate

the damping of edge-supported plate strips. Experimentally, dis-

sipated power was found to vary as the square of mid-point ampli-

tude for tightly bolted edges and as approximately the 2.5 power

for loosely bolted edges (Figs. 22, 24). By referring to Table II

one may then conclude that some of the models listed there cannot

represent the primary energy dissipation mechanisms in tightly

bolted edges, because they lead to dependences of dissipated power

on amplitude that are characterized by exponents that differ

markedly from 2.0.

The following models of the mechanisms listed in Table II

are characterized by exponents of about 2.0 and thus may dominate

the energy dissipation in tight joints:

I. Mechanisms associated with relative motion tangential to

interface

A.1 Coulomb friction, with rigid strip ends slipping
fully

B.l.,2. Shear of perfectly plastic or slightly work-
hardening layer of asperities.

II. Mechanisms associated with relative motion normal to

interface

B.l.,2. Compression of thin viscoelastic of perfectly
plastic layer of asperities

C. Viscous friction between inter-leaving asperities.
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Some of the mechanisms listed in Table II result in expo-
nents that are greater than 2.0. Although these mechanisms
cannot dominate the damping behavior of tight joints, they may
make some contributions to the damping of loose joints, and thus
help to produce exponents that exceed 2.0. Mechanisms for which
Table II lists exponents of the order of unity can play no sig-
nificant role in either the tight or the loose joints studied
experimentally.

Dominance of Normal Relative Motion

The experimental results summarized in Figs. 30 and 31 pro-
vide a comparison of the damping of a plate-strip with both ends
bolted to a rigid structure to the damping of the same plate-
strip fastened in cantilever fashion (i.e., at only one end).
If axial relative motion played a significant role one would
expect to obtain considerably higher damping when the plate is
fastened at two ends than when it is fastened at only one, since
in the two-support condition axial relative motion tends to be
produced when the strip is deflected laterally. Since no such
higher damping was observed it appears extremely likely that at
the low amplitudes studied the dominant mechanism is not asso-
ciated with tangential (axial) relative motion of the mating
surfaces at the supports.

For damping mechanisms that depend only on the moment and/or
normal force which a plate-strip exerts on its support(s) a plate
strip supported on two edges exhibits twice the loss factor it
has when supported as a cantilever (if material damping is small).
In other words, the loss factor per supported edge for such mech-
anism is the same for both support conditions. Figure 31 indi-
cates that this condition is approached for tightly bolted edges,
but not for loosely fastened ones.

The dependence of damping on bolt torque evident from
Fig. 29 shows that joint tightness has a definite effect on
damping, with tighter joints resulting generally in lesser
energy dissipation. Increased tightness is likely to result in
lesser relative motion at the joint and thus to reduce the energy
dissipation associated with virtually any mechanism. The avail-
able data do not permit one to judge whether joint tightness has
any direct effect on the mechanism as such.
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Conclusions

In view of the previously discussed results it appears

reasonably likely that for tight joints the dominant mechanism

here is due to relative motions of the mating surfaces in direc-

tions normal to the interface, and that the damping associated

with these motions acts essentially like classical viscous damp-

ing. The primary effect of increased interface pressure probably

is the reduction of the aforementioned relative motion, thus lead-

ing to reduced damping.

The damping behavior of "loosely" supported edges appears to

be somewhat different from that of tightly supported edges. Mech-

anisms associated with tangential motions may contribute signifi-

cantly to the energy dissipation in loose joints, even at very

small amplitudes.
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CONCLUSIONS

SUMMARY

Plate-Stiffener and Plate-Plate Joints

The dominant mechanism responsible for energy dissipation
at structurally acceptable multi-point-connected joints between
plates and stiffening members or between two plate portions, at
frequencies considerably above the plate fundamental, has been
shown to be associated with "pumping" of air produced by motions
of the mating surfaces between connectors away from and toward
each other. These motions have been demonstrated to depend
primarily on the ratio of plate flexural wavelength to connector
spacing. The attendant damping has been found to be relatively
insensitive to changes in connector tension (i.e., in local
interface pressure) and details.

Proportionality of a joint's damping contribution to total
joint length has been verified, and the applicability of Heckl's
absorption coefficient concept has been demonstrated. The addi-
tional observation that the absorption coefficient of a beam-
plate joint is approximately proportional to the joint (interface)
width has been made the basis for definition of a width-independent
reduced absorption coefficient. The theoretical relation between
plate flexural wavelength and frequency has been used to define a
reduced frequency parameter proportional to the square of the
ratio of bolt spacing to wavelength. Since it has been found
that most of the experimental data falls in a reasonably narrow
region of a plot of reduced absorption coefficient vs. reduced
frequency, it has been suggested that plots of this type be used
to predict the damping of beam-plate and plate-plate systems.

Continuously welded joints have been found to produce very
little damping. The loss factor of a plate with welded joints
thus is essentially the same as that of a continuous joint-less
one.

Edge-Riveted Structures

The mechanism dominating the low frequency energy dissipating
action at panel edges bolted to rigid supporting structures has not
been fully identified. Analyses and experiments making use of a
relatively new mechanical-power-dissipation measurement system
have indicated, however, that some mechanisms previously thought
likely to act at such joints cannot account for the observed
behavior.
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The damping behavior of tight joints has been found to differ
somewhat in character from that of relatively loose joints. It
has been shown that the damping of tight joints is likely to be
due to relative motions at the joint which are perpendicular to
the mating surfaces, and that the damping action is essentially
of a viscous nature. Slip at the interface has been shown to play
no important role in tight joints, but may contribute to the damp-
ing at loose joints.

DISCUSSION

Some Implications of Results

The dominance of the air-pumping mechanism in conventional
multi-point-connected plate-stiffener and plate-plate joints
implies that one cannot rely on such joints to control the high
frequency vibrations of skin structures of vehicles (or vehicle
portions) operating in regions of reduced air pressure. It also
appears that therefore tests of such structures at ground-level
pressures may underestimate the vibratory responses at altitude,
thus leading to non-conservative design or to an overestimate of
the factor of safety of a given structure. Use of a low-viscosity
lubricant in such joints may result in the maintenance of reason-
able damping levels independent of ambient pressure.

The effects of the damping due to structural joints must
also be taken into account in the construction of dynamic models
and/or in the interpretation of model test results, unless damping
mechanisms other than those associated with joints predominate.
Continuously welded or bonded joints cannot reproduce the damping
action of riveted, bolted, or spot-welded joints. Properly modeled
joints must be of the multi-point-connected variety and must have
the same fastener-spacing to panel-thickness ratio as the prototype
structure if their damping is to have the proper scaled frequency-
dependence. It may also be necessary to adjust the ambient atmos-
pheric pressure in order to obtain representative damping magnitudes
in models.

Although the precise way in which air pumping dissipates
energy is not known, it appears possible that atmospheric pressure
increases or the presence of ambient media other than air may pro-
duce significant damping increases. If such increases can be
realized, appropriately designed joints incorporating them may
provide light and efficient means for increasing the damping of
sealed (or pressurized) components or instrument packages.
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Further Studies Suggested

The work described in the present report provides one with

information from which one may estimate the energy dissipation

capability of a large class of structural joints of practical

importance. However, in calculating the response of a substruc-

ture which is part of a larger structure and relatively intimately

connected to other substructures, one generally needs to know how

much energy is transferred away from the substructure of interest

in addition to how much energy is dissipated. Simple and reliable

means for predicting energy conduction in realistic structures

still need to be developed.

The aforementioned air pumping mechanism is still insuffi-

ciently understood. One cannot state at this point whether
frictional losses in the air, acceleration of air masses, or

some other mechanism, is primarily responsible for the energy

dissipation. The effects of changes in properties of the ambient

fluid and of higher than atmospheric ambient air pressures still

remain to be investigated.

Additional studies, perhaps using more sensitive instrumen-

tation and test systems, are also required in order to identify

more fully the prime mechanisms responsible for energy dissipation
in edge-bolted panels. The effects of ambient pressure changes,

surface finish, and overlap width and rigidity would appear to be

of particular Interest here. Estimation techniques for this type

of joint also need to be developed after the mechanisms have been
identified.
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APPENDIX I

REVIEW OF JOINT DAMPING LITERATURE

RIVETED JOINTS IN BEAMS

Although one may visualize many different combinations of
joint geometries and Joining methods, many of the early inves-
tigations of joint damping were concerned with built-up beams
involving riveted (or quasi-riveted) connections. This choice
of structural system is a logical one; riveted beams play impor-
tant roles as primary structures in many applications, and beam
configurations of the types considered may generally be analyzed
more readily than other structures. Even these highly idealized
beam structures present analytical difficulties, primarily be-
cause of the nonlinearities associated with slippage and friction
damping.

Coulomb Friction Analyses

The damping characteristics of simple built-up structures
were first studied in some detail by Pian and Hallowell (Ref. 7).*
They analyzed I-beams with narrow plates bolted to the flanges
through oversized holes, so that the bolts would not make contact
with the cylindrical surfaces of the holes. The bolts provided
essentially only normal forces at the interface between the beam
and cover-plate. These normal forces determine the limiting
static friction force. The analysis was carried out by investi-
gating where this limiting force is exceeded and slippage occurs,
and by calculating from this information the energy dissipated
per cycle. Experimental results were found to agree quite well
with theoretical predictions; a relation between limiting friction
force and screw tightness having been determined experimentally.

Pian (Ref. 6) later extended the previous built-up cantilever
beam analysis to the case where sliding between the beam flanges
and capping plates is prevented by the tight fit of the (closely
spaced) screws. He performed the analysis by visualizing the
effect of the screws as that of a continuous shear joint, and
took the deflection of this joint into account in computing the
slippage and the cyclic energy dissipation. He again obtained
reasonable agreement between theory and experiment, using experi-
mentally determined values of the shear joint stiffness and fric-
tion force.

*Reference list appears at end of Appendix I.
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A structure whose damping action is closely related to that

of a built-up beam was investigated by Goodman and Klumpp (Refs.
8, 9). They dealt with a cantilever composed of two identical
leaves held together by a uniform pressure. This configuration
may more readily be idealized than Pian's and Goodman and Klumpp
were able to obtain some rather general insights into the damping
action of their system and to verify their theoretical conclu-
sions by some carefully performed experiments.

Goodman (Ref. 5) has pointed out that the previously dis-
cussed built-up or bi-leaf beam analyses involving Coulomb fric-
tion (and neglecting inertia effects) are special cases of a
broader class of interfacial slip problems. This broader class
includes other types as well as flexural primary deformations.
Analyses of all of these problems show that effective joint
stiffness is amplitude-dependent, that the cyclic energy dissi-
pation varies as the cube of the exciting force amplitude, and
that there exists an optimum interface pressure (for maximum
damping). For very high interface pressure there occurs no
slip, and therefore no energy dissipation; for very low pressure
slip occurs readily but the friction forces are very low and
thus dissipate little energy. Somewhere between these extremes,
at some optimum clamping pressure, considerable slip is asso-
ciated with considerable friction forces and maximum energy
dissipation occurs.

Critique of Coulomb Damping Analyses;
Comparison to Newer Results

All three of the aforementioned analyses were based on
assumed ideal Coulomb damping. That is, it was assumed that
slippage occurs only where the shear stress exceeds a certain
critical value, and that the shear stress in slipped regions is
equal to that critical value regardless of relative velocity or
displacement. These assumptions appear justified for the small
relative velocities and displacements one is likely to encounter
in configurations of this sort at low frequencies, as evident
from the reported agreement between theory and experiments car-
ried out at or below the fundamental frequencies of test canti-
levers. The applicability of Coulomb damping at higher frequen-
cies remains to be verified, particularly since friction coeffi-
cients generally do depend on relative velocity (Ref. 19). Piants
work is subject to the additional limitation imposed on it by the
assumption that the pressure field due to the fasteners is uniform.
A recent analysis by Fernlund (Ref. 20) shows that such pressure
fields may be obtained only with very closely spaced fasteners.
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In linear (viscously or viscoelastically damped) configura-
tions the stiffness, damping coefficient, and loss factor are
independent of amplitude; and the energy dissipated per cycle
varies as the square of amplitude. The previously discussed
ideal joints involving Coulomb friction thus behave nonlinearly;
such behavior has also been observed in full-scale aircraft
structures (Ref. 21). On the other hand, in measuring the damp-
ing due to a cover plate riveted onto a partially cut-through
beam Mead (Refs. 22 and 23) found the damping to behave linearly
up to considerable amplitudes. Mead used riveting techniques
more nearly representative of commercial practice than those
used in the previously mentioned investigations. Essentially
linear damping behavior over a wide range of amplitudes and fre-
quencies was also observed by Heckl et al (Ref. 17) on joints
cut from the fuselage of a production aircraft.

Mead (Ref. 22) has made a number of conjectures and experi-
mental observations of considerable interest. He has observed
that fretting occurs in an annular region around a rivet, but
not directly at the rivet, and has indicated that the actual
shape of the fretting area (where undoubtedly considerable fric-
tional motion occurs) may be affected by the local plate rough-
ness. This observation agrees with the general picture that
slipping begins in a region of low interface pressure and pro-
gresses toward the rivet with increasing applied load. (Clamping
pressures are highest nearest the rivet, as also demcnstrated in
Ref. 20.) Mead also has found different amounts of damping with
different types of rivets and has ascribed these differences to
the different shear stiffnesses of the rivet types. However, in
comparing rivet types he seems to have been unable to control or
measure interface pressure, which most likely is the single most
important variable and unfortunately presents formidable measure-
ment problems. Later measurements (Ref. 17) seem to indicate
that rivet details are of perhaps lesser importance in some
instances.

There seems to be little doubt that beams with riveted con-
nections behave nonlinearly and exhibit amplitude-dependent
damping, provided that Coulomb damping is the primary energy
dissipation mechanism. The methods developed by Pian (Refs. 6, 7)
and Goodman (Refs. 5, 8, 9) are able to predict the damping ade-
quately under these circumstances - at least for frequencies up
to the fundamental resonance. However, the aforementioned studies
do not answer the questions (raised by some experimental results,
Refs. 22, 17) as to if and under what circumstances Coulomb damp-
ing actually is the dominant mechanism.
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Practical Joints Designed for Damping

Riveted joints made according to current industrial practice

are by no means optimized with respect to damping; the design of

such joints is generally dictated by considerations of static

and/or fatigue strength. Increased damping may probably be ob-
tained by the use of fewer and looser rivets, but-it is doubtful

whether such changes would be acceptable in practice, since the

increased slippage then would produce increased fretting corro-

sion and an attendant increase in the structure's susceptibility
to fatigue failure. Lubrication of the joints is capable of pro-
ducing increased damping (Ref. 17), but the lubrication effects
must then also enter the corresponding static joint strength
calculations.

Perhaps the best understood and most reliable means for
obtaining acceptable joints with improved damping characteristics
consists of the use of viscoelastic inserts, as analyzed by Mead

and Eaton (Ref. 11). In such joints relatively well understood
material hyst resis takes the place of the somewhat nebulous and

difficult-to-analyze Coulomb friction; thus even analytical and
design problems are reduced. However, the damping of such joints
may generally be optimized for only certain types of relative
motion (e.g., tangential) of the adjacent surfaces, and use of
added material and deviation from standard practice may be objec-
tionable in some cases.

PLATE AND BEAM SUPPORT JUNCTIONS

The damping of beams attached at their ends to (rigid and

massive) supporting structures has been studied by Mentel and
his co-workers, who have also dealt with the analogous problem
for some edge-supported plates (Refs. 12-15). They studied
support junction damping with Coulomb friction and with dissipa-
tion in viscoelastic inserts, and considered contributions due
to axial or in-plane translation of the structures' edges with
respect to the supports, as well as those due to rotation (the
latter only for viscoelastically bonded joints).

Reference 12 deals with translational motion only and

demonstrates that properly designed Coulomb or viscoelastic
joints under these circumstances may dissipate more energy than
material hysteresis in the vibrating structure. It also indi-
cates that the rotational motion at a bonded joint may contribute
considerably more damping than the translational motion, but
study of the rotational effects seems to have been neglected in
comparison to the rather thorough investigation of the relatively
insignificant translational effects.
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Mentel's studies are concerned with perfectly rigid support-
ing structures, an idealization which simplifies the analysis and
may sometimes be approached in practical situations. His results
are probably upper bounds to the damping obtained in practice,
since lack of stiffness of the supports would generally tend to
reduce the relative motion at the interface and would thus reduce
the damping.

OTHER JOINT DAMPING STUDIES

Welded Joints

Kronenberg, Maker, and Dix (Ref. 16) report that they have
devised "damping joints" for welded assemblies. These joints
utilize welding shrinkage forces to pull adjacent surfaces into
close contact; rubbing of these surfaces then dissipates energy.
Although the authors exhibit experimental results that indicate
that these Joints have some damping effect, they do not provide
good quantitative data and do not indicate a clear knowledge of
the damping mechanisms involved.

Beam-Plate Systems

Heckl (Refs. 17, 18) has reported some measurements of the
"absorption coefficients" of beams attached to plates by various
means. He made no concerted effort to identify the mechanisms
responsible for the damping, however, but did advance some plau-
sible qualitative explanation for some aspects of the behavior
he observed. Heckl also studied the damping-interaction of beam-
plate systems (Ref. 24), but was not concerned with identifying
the damping due to the Joints themselves.
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APPENDIX II

TORQUE-TENSION CHARACTERISTICS

OF NUT-AND-BOLT ASSEMBLIES

Since it appeared likely that interface pressure at struc-tural joints may be an important parameter influencing the damp-ing produced by these joints, it was thought desirable to obtainsome idea of the variation in the bolt tension one obtains for agiven type of bolt with a given value of tightening torque.

The simple test jig shown in Fig. 35 was designed to studythe torque-tension behavior of small nut-and-bolt assemblies.The bolt to be tested is inserted in the block on the right and
is prevented from turning by means of a lock-washer under its
head. This washer is loaded by tightening of a nut against theblock. The block is intended to make only light contact withthe support and is designed to keep the narrow tension-measuring
strip from twisting. Elongations of this strip are measured bymeans of the strain gages indicated in the figure; the strip isrestrained by a second block attached at its left end. Shims
between this block and the left support upright are used toestablish the desired spacing between the right block and the
right support upright.

For calibration of the tension measuring element it is re-
moved from the test jig and suspended vertically (by a supportplaced under the block shown at the left in the sketch). Knownweights are then hung from the second block, and the correspond-
ing strains are measured by means of the usual strain gage bridgeinstrumentation. Calibration runs with weights up to 200 lbs(made before and after each series of measurements) showed thatthe strip behaved completely linearly and exhibited no residual
deformation upon removal of the loads.

Figure 36 shows some torque-vs-tension curves measured withthe apparatus of Fig. 35. The curves shown pertain to standard
#6-32 stainless steel screws in conjunction with 1/4" stainlesssteel nuts and standard #6 steel washers between nut and test Jig(at the right of Fig. 35). These screws were used in all of thereported experiments on bolted joints because their high strengthpermits one to study a relatively broad range of interface pres-
sures. Torque measurements in all cases were made with a TQ5-1torque-driver (Snap-on Tools Company), with which the nuts weretightened. This torque driver has a range of 12 in-lb and is
accurate to about 1/4 in-lb.
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Figure 36 pertains to the first tightening of a new nut on
a new screw; each curve pertains to a different nut-and-screw
assembly. Different behavior may be expected if the nuts are
loosened and retightened a number of times. Figure 37 shows
typical results obtained for the third tightening. It is evident
that the curves of Fig. 37 have lesser slopes than those of
Fig. 36, and that less tension is obtained for a given torque
during the third tightening than during the first.

The effect on tension (obtained with a given torque) of the
number of times a nut is tightened is summarized in Fig. 38,
where each symbol refers to a different nut-screw-washer combi-
nation. The light curves of the figure indicate the spread of

the data points for each torque level (disregarding data judged
unreliable), the heavy curves represent estimated means.

From Fig. 38 it is evident that there is a considerable
spread in the tension data for a given torque. It also appears
that this spread decreases (in actual value and in terms of the
percent of average tension it constitutes) with increasing number
of tightenings. From the data and from visible scoring of the
washers produced by the turning of the nut one may surmise that a
considerable fraction of the applied torque is used to seat the
nut during retightening, leaving less torque to produce tension
in the bolt.

In view of the data summarized in Fig. 38 it is evident that
one must use care when one is concerned with measuring the effects
of interface pressure. For the interface pressure effect studies
discussed in the main body of this report measurements were taken
only after tightening each nut several times in order to reduce
the spread of the resulting values of bolt tension.
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APPENDIX III

ON THE MOTION OF A PLATE RELATIVE TO A BEAM

ATTACHED WITH UNIFORMLY SPACED POINT-FASTENERS

The motion of those plate portions near an attached beam
relative to this beam must be understood before one can hope to
analyze the damping due to any mechanism associated with such
relative motions. The present appendix is a step toward the
calculation of the normal motions of the plate portions between
fasteners relative to an attached beam and toward the evaluation
of the effects of frequency and other important parameters.

Under realistic conditions (and in the beam-plate experi-
ments discussed in this report) the plate is generally driven
at a point or points far from the attached beam, so that a
diffuse flexural wave field is set up on the plate. This field
interacts with the beam, primarily at the fastening points.
These plate motions may be reasonably represented by superposi-
tion of 1) the diffuse plate motion in absence of an attached
beam, and 2) the plate response to excitation at the fastening
points, of proper phase and magnitude so that these points remain
fixed in space. (This fixity requirement essentially assumes that
the beam motion is very small compared to the plate motion - a
condition which one may expect to encounter generally in practice.)
One cannot prescribe truly realistic driving point phases and
magnitudes, however, without a great deal of mathematical com-
plexity. In order to arrive at some understanding of the phen-
omena involved it seems sensible to deal first with a simpler
mathematical formulation which bypasses this complexity and which
hopefully will retain the essential features of a more realistic
formulation.

Accordingly, the following pages deal with a study of the
plate responses to in-phase forces of equal amplitude, applied
at points spaced uniformly along a line. (This arrangement also
corresponds to the plate being driven via a rigid beam, with
forces transmitted only at the joining points.)
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PLATE DRIVEN AT A SINGLE POINT

The deflection w of an infinite plate due to,n oscillating
point force* F applied at the origin is given by

W = wl(O)[H (2) (kr) H H(2)(-ikr)] wl(O) G(kr) ,(15)

where

w( 0 F = 8V'. (16)

Here r denotes a radial coordinate within the plane of the plate
and t denotes time. Also, w (0) and v denote driving point dis-
placement and velocity phasos, respec?ively, and Z denotes the
classical driving point impedance (expressed in terfis of flexural
rigidity D and mass per unit surface area m). The symbol k denotes
the flexural wave number; it obeys

k4 = 2 m/D . (17)

The function H(2) is the zero order Hankel function of the

second kind, which Ts related to the zero order Bessel function
J , the zero order Neumann function N , and the zero order Hankel

fanction of the first kind H r. For p8rposes of computatio is

convenient to introduce these latter functions. One finds- ' -"

*The usual complex notation convention is employed here. Steady-

state sinusoidal motion is implied; the time-dependent function
a(t) corresponding to a complex variable (i.e."phasor") a is ob-

tained from

a(t) = Re{a eit}

I_/ L. Cremer, "The Propagation of Structure-borne Sound".
Sponsored Research (Germany) Report No. 1 (Series B).
(British) Dept. of Scientific and Industrial Research.
Circa 1948, pp 56-59.

2_/ E. Jahnke and F. Emde, Tables of Functions, Dover Publica-
tions, New York, 4th Ed., 1945, pp 133-13b.
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G(kr) = J 0 (kr) - i[N 0 (kr) + iH 0 (ikr)] . (18)

For small arguments2 "3/, i.e. for Jxl<<l

J ( X ) = - x ) + .

No (x) = 2 in x (19)

iH (ix) =- 2 n YX
0 T M  2

where 7 = 1.781072 is Euler's constant.

For large arguments,L-'/ i.e. for lxl l,

J-(X) cos(x-r/4)

No(x) = \ sin(x-r/4) (20)

iH0 (ix) = x e

One thus finds that

G(x) 1 - (2EJ for Ixl<<l

G(x) =C [cos(x-r/4) - i{sin(x-/4) + e-X}l for xl>>l

T x e-i(x-7/4) (21)

3/ P. M. Morse and H. Feshbach, Methods of Theoretical Physics,
McGraw-Hill Book Company, Inc., New York, 1953. Part II,
pp 1321-1323.
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Figure 39 is a complex-plane plot of G(kr) similar to
Cremer's.-/ It shows that IG(kr)l decreases and approaches
zero as kr increases, the decrease being rather rapid for
small kr and slow for large kr.

PLATE DRIVEN AT TW1O POINTS

Absolute Motion of Driving Points

Before considering the response of a plate driven at many
points one may do well to study the behavior of a plate being
driven at two points by equal forces of magnitude F acting in
phase. The deflection w2 (O) of the plate at either of the two
driving points (by symmetry, the two respond identically) may
be determined by superposition. If d denotes the distance be-
tween the two d.riving points, then One may write

w2 (O)/wl(O) = G(O) + G(kd) = 1 + G(kd) , (22)

where w (0) denotes the driving point deflection amplitude ob-
tained ;ith only a single force F acting.

A complex plane presentation of l+G(kd) appears exactly
like that of G, except that the l+G curve is one unit further
in the positive real axis direction than the G curve. (Alter-
nately, if the curve is kept fixed, the coordinate system may
be translated one unit in the negative real axis direction, as
indicated in Fig. 39.)

Figure 40 shows how the amplitude ratio lw2(O)/w (O)l varies
with kd. As also evident from Fig. 39, this amplitudl ratio is
2.0 for small kd, exhibits a generally oscillatory nature, and
approaches 1.0 for large kd. At small kd the two forces act
essentially as a single one of double magnitude, hence produce
twice as much deflection as a single force. At large kd the
deflection due to the second force produced at the driving point
of the first is negligible, hence the driving point of each force
responds essentially only to its own force, independently of the
other.

The foregoing observation may have some interesting prac-
tical applications. If one is required to apply an oscillating
force of given magnitude to a plate, it may be advantageous to
distribute this force to two (or more, say n) driving points
spaced a suitable distance d apart, via a rigid bracket or
platelet. At low frequencies (small kd) essentially nothing
will be changed relative to single-point application of the
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force, but at high frequencies (large kd) the applied force will
"see" twice (or n times) the single-point impedance and its point

of application will therefore move with only 1/2 (or 1/n) of the
single-point amplitude.

Relative Motions of Plate Between Driving Points

If one considers a rigid beam driving a plate only via a
number of discrete fastening points (with excitation applied to

the beam so that its rotational motion is suppressed), then the

forces at all points act in phase. The relative motion of the

plate with respect to the beam is then the same as that with
respect to the driving points.

With two driving points a distance d apart the relative
motion of the plate between the driving points is given by

w2 rel(kr)/wl(O) = G(kr) + G(kd-kr) - w2 (0)/wl(0)
(23)

= G(kr) + G(kd-kr) - [1 + G(kd)]

where r is measured from any one of the driving points.

By specializing Eq. (23) for r=d/2 one finds that the rela-

tive motion of the point midway between the driving points is
described by

w2 rel(kd/2)/wl(0) = 2G(kd/2) - [1 + G(kd)] . (24)

Amplitudes calculated from this equation are also plotted in
Fig. 40. If one is interested in the relative motion produced

by a given driving point motion rather than in that produced by
a given driving force, one may obtain the desired information
by dividing Eq. (24) by the driving point amplitude, as given
by Eq. (22), and obtain

w2 rel(kd/2)/wl(0) w2 rel(kd/2) 2G(kd/2)

w2(0)/wlTO) w2 (O) 1 + G(kd) - (25)

The absolute value of this expression is also plotted in Fig. 40.
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For damping calculations it may turn out that the space-wise
average relative deflection is desired, and not merely the rela-
tive deflection of the mid-point. This average value for a given
kd may be computed from Eq. (23); the results of such calculations
are shown in Fig. 40. From the similarity of the pertinent curves
in this figure one may conclude that the mid-point amplitude is a
good measure of the average amplitude, at least up to values of
kd of about 8.0.

PLATE DRIVEN AT INFINITE NUMBER OF EVENLY SPACED POINTS

Absolute Motion of Driving Points

By extending the previous analysis to an infinite number of
driving points equally spaced along a straight line one finds
that the deflection of the driving points is given by

wC(O)/wl(0) = G(O) + 2 E G(nkd) (26)

n=l

The factor 2 here is required to account for contributions of
forces on both sides of a given point. Here again, w1 (O)
denotes the deflection obtained at a single driving point when
no forces are acting elsewhere.

Relative Motion of Points Midway Between Driving Points

The (absolute) deflection at a point half-way between any
two driving points is given by

00

w((kd/2)/wl(O) = 2 E, G[kd(n + , (27)
n=O

whereas the deflection of this point relative to the driving
point obeys

Wcrel(kd/2)/wl(0) = w(kd/2)/wl(O) - wo(O)/Wl(O) . (28)
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Convergence; Calculations

The foregoing expressions, although simple in form, may pose
formidable computational difficulties. Convergence of the various
foregoing series is a problem that must be considered among others.
It may best be approached by using the large prameter approxima-
tion of Eq. (21), which indicates that IG(nkd)j decreases mono-
tonically as n increases. If Eq. (21) is a good approximation for
nkd>n kd where n is a suitably chosen integer, then one may re-
writeEq. (26) ag

n

w(O)/wl(O) = G(O) + 2 G(nkd) + 2aei / 4  (29)

n=l

where, in view of Eq. (21)

a o(k)-Isin(nkd)] (30)

One may then investigate the convergence of Eq. (26) by studying
the convergence of Eq. (30).

For values of kd that are odd multiples of r one finds that
the real and imaginary parts of a are alternating series whose/
terms decrease in absolute value, and the series a converges.
For values of kd that are eve multiples of r, the two component
series are of the form Z n- 1/ 2 , which is known to diverge.

For small values of kd, say kd<<r/2, one may replace the
summation of Eq. (30) by an integral and write

a 00 eik n 1C e _Xdx (31)
n-n+l x 0

An=l

3j/ H. W. Reddick and F. H. Miller, Advanced Mathematics for
Etineers, 2nd Ed. John Wiley and Sons, Inc., New York,
1946, Chapter IV.
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where x is a dummy variable which replaces nkd in the integration,
and

x 0  (n0 + 1/2)kd (32)

In order to evaluate the right-hand side of Eq. (31) one may note
that it is simply related to the Fresnel integral

C ( x ) _ i S ( x ) j 1 e -iXe( 
3 3

0 0 _ d, (33)

whose real and imaginary parts, C and S, are tabulated.- / One

finds that

= [C( ) - is('0) - C(xo ) + iS(x 0 )] -V2/kd

= - C(X) + is(xoo) -V/kd 
(34)

Obviously, the series of Eq. (30) converges for O<kd<<7T/2
although it diverges for kd=O.

One finds similarly that the series of Eq. (27) also con-
verges if kd is equal to odd multiples of w and diverges for kd
values that are even multiples of v.

The results of some relatively rough calculations based on
the equations and approximations discussed in this subsection
are summarized in Fig. 41. These calculations were carried out
"by hand", and thus account for only a very limited number of
terms for infinite series (for which good approximations are not
available). Although a high-speed computer can undoubtedly be
used to advantage to obtain more extensive and more precise
results, the results shown in Fig. 41 do illustrate the behavior
of the various functions adequately for the present purpose.

Figure 41 is analogous to Fig. 40; Fig. 41 pertains to an
infinite number of driving points, Fig. 40 to only two. A marked
similarity of these two figures is evident. A major difference
between them is the tending towards infinity of some of the curves
of Fig. 41 at d/^ values of 0, and 2r, compared to the appearance
of peaks in the corresponding curves of Fig. 40.

5/ Jahnke and Ende, pp 35, 36.
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RESULTS

As evident from the curves for !W2rel (kd/2) /w 2 (0) I and

w -rel(kd/2)/w.(0) shown in Figs. 40 and 41, the maximum

relative motions of the points on plates midway between
fasteners (relative to attached beams) corresponds to values of
d/\ that are somewhat greater than 1/2. Here, as previously,
denotes the plate flexural wavelength.

These mid-point motions appear to be representative of
space-wise average motions of the plate portions between
fasteners, for values of d/?\ up to about 1.2. Figure 40 also
indicates the occurrence of secondary relative motion maxima
near d/A=l.5; Fig. 41 is not sufficiently complete to show any
corresponding maxima that might occur in the case of plates
driven at an infinite number of points.
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APPENDIX IV

CHARACTERISTICS OF BEAM DAMPING DUE TO SOME POSTULATED

ENERGY DISSIPATION MECHANISMS AT SUPPORTS

I. INTRODUCTION

In the following pages are summarized analyses pertaining
to several energy dissipation mechanisms that one can visualize
as possibly acting at structural joints. These analyses are
concerned with a configuration consisting essentially of a long
narrow plate whose short edges are fastened to rigid supports,
and which is driven by a sinusoidal force (of adjustable fre-
quency and amplitude) applied to the plate center. The analyses
seek to develop relations between the rms force, driving point
velocity, and the steady-state average power dissipation one
would measure at the central driving point for the various mech-
anisms considered.

II. DAMPING MECHANISMS ASSOCIATED WITH
LONGITUDINAL RELATIVE MOTION

It has been suggestedi/* that damping at support junctions
may be due to relative shearing motions associated with effective
shortening of a beam span resulting when the beam is deflected
laterally. The present section deals with the power dissipation
one may expect to observe for various assumed friction processes
acting in conjunction with the longitudinal relative motion in-
duced by this foreshortening.

A. Uniform Coulomb Friction; Inextensible Overlap

Consider a beam attached to rigid supports, as sketched in
Fig. 42, to be driven laterally. Longitudinal motion of the beam
portions overlapping the supports will result relative to these
supports due to this lateral motion, and friction at the inter-
faces will produce energy losses. One of the simplest loss mech-
anisms one may postulate is that of Coulomb friction. This mech-
anism consists of a friction force which is of constant magnitude
whenever relative motion occurs, but which has a direction which

*Superscript numbers and the symbol shown here refer to the list

of references for Appendix IV, page 125.
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always opposes the motion. In the following paragraphs the damp-
ing due to such Coulomb forces is analyzed, subject to the addi-
tional assumption that the overlap portions of the beam do not
deform (axially) due to the friction forces. However, effects of
elastic restoring forces, as perhaps provided by bolts or rivets,
and elastic deformation of the free length of the beam are taken
into account.

A problem related to the one outlined here has been approached
by Mentel!7, but for a different purpose. The following analysis
leans somewhat on Mentel's work, at least in its initial stages,
and consists to some extent of a reinterpretation and of extensions
of it.

The change in projected length (on the x xis of Fig. 42) of

a beam in absence of axial forces is given by_

2L

A(2L) =1 (3y/)x)2 dx= 2C 2 (35)1 21 f (YO

0

according to classical small-deflection beam theory. Here y(x)
denotes the deflection shape,y the central deflection of the
beam. C is defined by Eq. (35)as a coefficient which depends on
the deformation curve of the beam and which expresses the relation
between A(2L) and y . Note that L is defined as half the total
beam length, As indiSated in the figure.*

An axial force N acting on the beam will cause it to stretch
by an amount

A(2L)2 = N(2L)/EA (36)

where A denotes the cross-sectional area and E the Young's modulus
of the beam. This stretching reduces the axial displacement (com-
pared to the inextensible case) resulting in a net axial displace-
ment on each side of the beam of Fig. 42, (assuming symmetric
behavior) given by

s =AL1 -AL 2 = C Y - ff (37)

*A list of symbols for Appendix IV also appears on page 126.
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Let us assume that the overlapping beam portion itself is

rigid and that it is elastically restrained by a stiffness K

(representing all elastic restoring forces, such as those asso-
ciated with bolt deformations and shear of asperities at the
interface) and subject also to an ideal Coulomb friction force
of magnitude it. If longitudinal inertia effects are neglected,
one finds (see diagram, Fig. 42b) that

N = Ks + sgns . (38)

Equation (38) is represented by the two slanting straight

lines of Fig. 42c. Since the Coulomb friction force may vary
between +. and -p. if no slippage occurs (that is, for s = 0),
the N-s curve one obtains as s traverses a complete cycle is a
parallelogram, as shown. One may note that for the beam under
discussion s>O at all times, and that the foregoing derivation
assumes that N is sufficiently large to overcome the friction
initially. The parallelogram thus may be considered to corres-
pond to conditions after the vibratory steady state is reached.

Substitution of Eq. (38) into (37) and subsequent solution
for s yields

Cy2 - (Lp/EA)sgn(s)
s -0 1 + KL/EA (39)

from which one may readily calculate the maximum and minimum
overlap displacements smax and smin *

The energy dissipated by one end of the beam in one cycle

of overlap displacement s (or for one half-cycle of lateral beam
displacement y) is represented by the area of the parallelogram.
Thus, the energy U dissipated by the beam (both supports) per
cycle of lateral beam displacement is given by

U = (sma sin(2) =+8/ E C 2  - 2Lp./EA) (40)
max -min2 1 + KL/E Ymax

where Ymax denotes the (time-wise) maximum value of y0

Again, Eq. (40) is valid only for Cym >a2Lx/EA. One may

readily verify that no slip at all occurs if Cymax < L4/EA,2ma

whereas if 2Lpi/EA > Cymax > Lp/EA slip occurs only until steady-

state conditions are established.
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Equation (40) establishes the amplitude dependence of cyclic
energy dissipation one would expect to observe if Coulomb friction
associated with longitudinal slip is the dominant energy dissipa-
tion mechanism. Although Eq. (40) exhibits no explicit frequency
dependence of U, one must recall that the coefficient C depends on
the beam deflection shape, which does depend on frequency. (The
frequency-dependence of the parameter C is discussed subsequently.)
Of course, it is possible that the friction force 4 may also be
frequency-dependent in actuality.

B. Nonuniform Coulomb Friction; Elastic Overlap and Partial Slip

The previous analysis of energy dissipation due to Coulomb
damping in the configuration of Fig. 42 neglects stretching of
the overlapped portion of the beam and thus pertains only to the
case where relative motion occurs at once over the entire inter-
face. This sort of behavior is likely to be approximated at
rather large (beam lateral motion) amplitudes, but probably not
at relatively small amplitudes. The present section deals with
an analysis that takes stretching of the overlap into account
and also considers nonuniform friction force distributions.

1. General Analysis

For the present analysis the beam support is still considered
rigid; i.e., much stiffer than the beam itself, and the beam over-
lap is assumed to act in extension like a one-dimensional elastic
continuum. It is postulated that the friction force distribution
may be expressed in terms of a function 4(x) of axial position
(Fig. 43b) which may, for example, account for the distribution
of normal pressure, for the axial distribution of friction area
(such as around a bolt), and/or for variations in the friction
coefficient. (Note that p. here has dimensions of force/length,
whereas the previously used kL denotes a force.) If an axial
force P is applied to the end of the overlapped beam portion then
it will stretch, and slippage of a part of the overlap with re-
spect to its support will occur. If the applied force is opposed
only by the friction forces, i.e. if external elastic restoring
forces and inertia effects may be neglected, then the distance d
over which slip occurs for a given value P=F of the applied force
may be calculated from the equilibrium requirement

F = I(d) (41)

where

1(x) f 4(x) dx (42)
0
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and the origin of the x coordinate is at the outermost edge of the
friction (or interface contact) area as indicated in Fig. 43.

The axial force in the beam will then be zero where no slip
has occurred (x>d) and will be equal to the applied force F out-
side of the friction region (x<O). Within the slipped region
equilibrium requires that the axial force N(x) obey

x

N(x) =F- f tdx = F -I(x) o < x < d (43)

0

This axial force distribution permits one to calculate the strain
distribution, and from this one may in turn readily determine the
displacement u of the point on the beam at the edge of the fric-
tion area. One finds

d

uAE =f N dx (44)

0

where A denotes the area of the beam cross section and E the
Young's modulus of the beam material, as before.

If after application of the force F the applied force is re-
duced to a new value G, the beam may be expected to contract.
This contraction can occur only in conjunction with some inter-
face slippage, this time in the direction opposite to that in
which slippage occurred during the initial load application.
This reversed slippage causes reversed friction forces to act
on the bar, resulting in a friction force distribution like
that represented by the solid curves of Fig. 43d.

The new axial force distribution N(x) and the extent of the
reversed slip region x=b may again be determined from equilibrium
requirements. One finds

F-I(x) b < x < d
N(x) (45

F-21(b) + I(x) o < x < b

G = F-21(b) . (46)

105



N=G for x<O, N=O for x>d is again implied; the new corresponding
displacement u may now be calculated by substituting Eq. (45)
into (44).

If after reduction to G the load is increased to a new

value (H F), this load increase produces extension of the bar
and slippage in the initial direction, so that the friction
force distribution appears like that of Fig. 43e. One may find
the corresponding new axial force distribution and the extent
x=c of the newly "re-slipped" region from

F I(x) b < x < d

N(x) = F 21(b) + I(x) c < x < b (47)

F- 21(b) + 21(c) - I(x) 0 < x < c

H = I(d) - 21(b) + 21(c) (48)

The displacements u , uG, uH, obtained at the force values F,
G, H, respectively, may be found to be given by

AE uF = Fd - M(d)

AE(uG-uF) = 2M(b) - 2bI(b) (49)

AE(uH-uG) = - 2M(c) + 2cI(c)

where
X

M(x) I(x) dx . (50)

0

For the case where H=F one may conclude from comparison of
Eqs. {41) and (48) that I(b) = I(c), or that b=c. [If the orig-
inal 4(xfl is everywhere positive, then I(x) is monotonic, and
I(b) = (c) implies b=c uniquely.] But Eqs. (49) show that then
UF = u One may easily convince oneself that further load cycles
betweeg'F and G will result in repeated tracing of the same force-
displacement curves; i.e. of the loop sketched in Fig. 43f.

106



The energy U dissipated per cycle* is proportional to the
area of this loop and may be determined most readily from
U c = - udP. One finds, after some manipulation, that

AUC (F-G) [(F-G)b - 3M(b)]- 2 b 12(x) dx (51)
2 f

0

where b must be obtained from Eq. (46).

2. Special Cases

a) Uniformly distributed friction force

For jT(x) =4 = constant one obtains the particularly simple
result

U = 4u = (F-G)3 /3AE4 0 (52)

which a0rees with a result readily deducible from the work of
Goodman/. As also was noted by him, the cyclic energy dissipa-
tion in this case is dependent on the third power of the load
range, but independent of the average load level.

b) Circular friction area

For a bolted Joint one may assume the friction area to be
circular. If this area has a radius a and if the interface pres-
sure and friction coefficient are uniform, then one may set

= kl 2ax-x (53)

to account for the circular geometry. The appropriate integra-
tions can be carried out in closed form, but the results are
lengthy and so cumbersome that they cannot readily be interpreted
without considerable numerical work. Hence they are omitted here.
However, for b<<a [noting that all integrations implied in Eq. (51)
extend no further than to x=bl one may take

*U denotes the energy dissipated at one support of the beam of

Fig. 42 per cycle of the variable u (or s). The total energy
dissipated per cycle of beam lateral motion is U=4U

c
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1 2(54)

and obtain the following from Eqs. (51) and (46):

AEUC = (1l/20)(9/32) 1/3 (F-G)8/ 3 (,l a)-2/3 (55)

One notes that here U varies as the 8/3-power of load range,
but is again independent o average load level.

c) Exponential friction distribution

If one postulates a more general exponential dependence of
the friction distribution by setting

1(x) = ktaa(X/a)n . (56)

One then obtains

AEU = (F-G)n+l (n+l) a n 4n 2 + 7n +1 (57)L 2 a j 2n2 + 7n +6J

For n=O, corresponding to constant 4, this reduces to the pre-
viously found 3rd power dependence on load range; for n=l/2 this
reduces to Eq. (55) if the coefficients are properly matched
(i.e. if ka =4l1a V2). As n increases the exponent on (F-G)
approaches 2. For an exponential friction distribution the
cyclic energy dissipation therefore varies as some power between
the second and third of the load range.

3. Expressions in Terms of Beam Lateral Deflection

In the beam set-up sketched in Fig. 42 one may measure the
maximum lateral beam deflection y a at the beam center more
readily than the axial load rangem x(F-G), hence it is of
interest to re-cast the previously established relations in
terms of Ymax"

One notes that in the assumed absence of axial inertis and
viscous phase lag effects the maximum axial deflection occurs
when the axial force is maximum, and that this maximum force F
occurs when the beam lateral deflection is greatest. Similarly,
the minimum axial deflection occurs when the axial force is
minimum (equal to G), which occurs when the beam lateral deflec-
tion is zero. Thus, from Eq. (37),
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2
U u = CY - FL/EA (58)

Umin U G = - GL/EA

With these and Eqs. (49) and (46) one finds

AEC 2 = (F-G) 1 + b 2 M(b) (59)
-L-- Ymax L (

By use of Eq. (46) one may also write

b

2M(b)= I dx = (F-G) <I>b
L LIb J x=(-)I(b)L (0

0

where <I> denotes the mean value of I between x=O and x=b. Then
one may rewrite Eq. (59) as

AECy~ 2'~'Ib).(1
Yma = (F-G) 1b +_6D

Since I(x) increases monotonically, <I> is always less than
I(b) and the parentheses multiplying b/L in the above expression
always have a value less than unity. In most practical configura-
tions the slip length is much less than the beam length, b/L<<l,
so that

2 L(F-G)/AEC (62)
Ymax

Equation (51) may similarly be rewritten as

AEUc = (F-G)2 b [1 - 2T I ] (63)
I b 1 2 1(b)

The terms in the right hand bracket are generally not negligible
relative to unity. They involve b, and b depends on (F-G).
Hence, one cannot readily set down a simple general expression
for U in terms of y2  which involves no implicit dependence
on (F2G). 

max
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However, one may treat various special cases. For 4=4 0 one

finds from Eqs. (52) and (62) that*

U c - 12 ) (64)

Similarly, from Eq. (55) one finds that for I=Vi /. 1,

Uc ff 31 (41-Va )-2/3 8 /3 (65)

and, from Eq. (57), for 4=4a(x/a)n

n] 1 L- 2n+3n+l)a 1 n 1+ 7n + AE 1 n+l

ut [ .-a] 2n2 + 7n + 8j (66)

*For -=o one may carry out an exact analysis, based directly

on Eq. (59), and find

_____ [) AEC y2a3
U 0 11A +max[ 1+ p0 L2

which reduces to Eq. (64) for AECy /L2 <<l. However, for
AEC 2  / L2>>max o

Ymax

(2 0 L)3  AEC 2  max 3  AE)1/2C 3
c U 12AE~ 4 ) 0L 40 (L. / 3 31  Y;ax
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C. Purely Viscous Friction

If the damping at the interface is assumed to be of purely
viscous character, then the axial force-displacement relation
may be written

N = Ks + cv (67)

where c is a "viscous damping coefficient". Substitution of
Eq.(67) v into Eq. (37) leads to the differential equation

2

(1 + KL/AE)s + (Lc/AE)s = Cy 2 (68)

If y0 varies sinusoidally with frequency w0 then one may write

2 2 2w t 1 2
Y= ymxsin J0t fyw2wYO=Ya 2 y (1-cosot) , o -u 2wo (69)

After substitution of Eq. (69) into (68) one may solve the re-
sulting inhomogeneous differential equation to obtain

s v = 2 -e-vt) + 1-cos Wt - sin wt

J Cy2  AE/2Lc (70)
Ymax v

c v -K+ AE/L

if one assumes also that the system is initially at rest at zero
displacement.

The "steady state" is approached as vt becomes >>l. The
motion described by Eq. (70) then approaches a pure sinusoid and
the corresponding steady state cyclic energy dissipation may be
calculated from

2v

U c ;=N ds =fjN ;dt= f N d (at) .(71)

0

With ; determined from Eq. (70) and N given by (67) one finds
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U vJ 2 ca ( =T )CE2 2vo(72)
U 2 + = Ymax L (2cvo)2 + (K+AE/L)2  (

where wo is the previously introduced frequency of the lateral

motion of the beam.

D. Shear of Viscoelastic Layer

Consider a thin viscoelastic layer interposed between the

rigid support and the beam. Let the thickness of this layer be

denoted by h and its area (perpendicular to h) by Ac. If the

complex shear modulus of the viscoelastic material is G=G1 +iG 2

at frequency a 2
o then the axial force is given by

N = (G1+iG 2 ) Ac s/h (73)

This is analogous to Eq. (67), with

K = G1A /h , cv = G2 Aa /h (74)

Hence, one may simply substitute (74) into (68) to obtain

4 1CAE
2  G2Aa/h

U = rYmax L (G 2 A a/h)2 + (GlAG/h + AE/L)2  (75)

E. Plastic Flow of Interface Asperities in Shear

One may visualize that energy at the joints of Fig. 42 may

be dissipated due to yielding and subsequent plastic flow (in

shear) of asperities bridging the two structures at the interface.

If these asperities are considered rigid-plastic and non-work-

hardening, then the axial force-displacement relation may be

written as

N = Ks + Fy sgns (76)

where F denotes the force required to produce yielding. Since

Eq. (7 6 f is identical to Eq. (38) except for the substitution of

Fy for 4, the analysis for the present case is identical to that

for Coulomb friction. Hence the result applicable here is de-

scribed by Eq. (40) with 4 replaced by FY'
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III. DAMPING MECHANISMS ASSOCIATED WITH ROTATION AT SUPPORTS

Since longitudinal motion of supported beam ends is a second
order effect of the lateral motion of a beam, it is likely that
equally significant damping contributions may be made by mecha-
nisms that are associated with other types of relative motion,
e.g., with rotation of the beam ends with respect to their sup-
ports. The next few paragraphs present a brief analysis of some
such mechanisms and draw some conclusions concerning their energy
dissipation properties.

A. Compression of Viscoelastic Asperities; Rigid Overlap

One may visualize that asperities of the support and beam
overlap-surfaces become in effect welded together at their points
of contact by the action of interface pressure, such as that gen-
erated by the action of a tight bolt. Thus, one might expect to
find a thin layer of welded asperities in which even slight motion
(perpendicular to the interface) can induce high stresses (in view
of the thinness of the layer and the small welded areas) and thus
produce damping.

As a first approximation one might consider the portion of
the beam that overlaps the support to be rigid. If one neglects
its inertia, as one may do In view of the extremely -mall expected
amplitudes, then one finds that the motion of this overlapped
portion is fully determined by the shear force Q and moment M
acting at its edge (see Fig. 44b) and by p(z), the support load
distribution (force/unit length) change measured from the condi-
tion where Q=M =0, i.e. from the condition where the beam is
undeflected fr m its equilibrium position.

Equilibrium of the overlapped portion demands

W

Mb = f p(z) z dz
0

(77)
w

Q = f p(z) dz

0

where the z-axis is that indicated in Fig. 44b and w denotes
the total length of overlap. The edge force 0 and moment M are
applied to the overlap by the adjacent beam and may be approxi-
mated by the corresponding quantities acting at the support of
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a clamped-clamped beam, since the deflections of the overlap are
very small in general. Thus, if the beam deflections y(x) are
given in terms of the x-y axis system shown in Fig. 44b, one may
write

Mb = EI[32y/x 2] x=O CMyo Q = El[I3y/ x3]x=70 CFyo  (78)

where y denotes the deflection of the beam center and CM and C
are coeificients that depend only on the deflection shape of th5
beam and on its flexural rigidity EI. These coefficients are
discussed further in Section IV of tRis appendix.

If it may be assumed that the asperities produce an elastic
restoring force, then

p(z) = k(K 1 z + K2 ) (79)

where k denotes the stiffness per unit length of the layer of
asperities and K1 and K2 are constants. Then, from Eqs. (77)-(79)
one finds

CQ Yo = wk(K + K2 )

w K (80)

CM Yo = w2k(K w +-2-)1 3 2

which one may readily solve to obtain

6y° 2CM Y (81)kKl = - CQ kK2 = -'W--

The total energy stored in the layer of asperities then is
given by

W=tk f (K,z + K2)2 dz = [ 3 + KlKw 2 + k2w]

0
(82)

1CM

114



If this layer is considered as viscoelastic, with loss factor i,
then the energy U dissipated (at one support) per cycle, in

view of the definition of loss factor, is given by

Yo 3CM 2 C Q+C

Uc = 27rWTj = 4rn k ( - 3( CQ+ . (83)

The total cyclic energy dissipation U for one support is twice
this value, of course.

B. Compression of Viscoelastic Asperities; Flexible Overlap

Under some circumstances it may be more reasonable to assume
(in view of the possibly great relative stiffness of the layer of
asperities) that the behavior of the overlap may be comparable to
that of a semi-infinite beam on an elastic foundation, as sketched
in Fig. 44b.

2/
The deflection y of the overlap then is given by-'

y = e ab [Q cos ax - aMb(cos ax + sin ax)]y=2a3EIb

4 0(84)
a Ek/4EIb

in terms of the coordinate system of Fig. 44b. One may then
calculate the energy storage in the layer of asperities analogous
to Eq. (82), and from it determine the cyclic energy dissipation
Uc (for one support) to be

U TT) k y2 dx = HIP 2 [3C2 + 6a2 C2 - 8acMc] (85)

For the odd resonant modes of a clamped-clamped beam one

finds (see next section) that

CQ P C ' CM + EIP 2 (86)
n nM ' b n

where pn denotes the wave number pertinent to the nth mode.
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With the aid of this one may rewrite the result of Eq. (83)
as

jy C43 + 3pnw + (Pnw)2 = , (87)= kw3 0

where w denotes the n th natural (radian) frequency. The latter
approxiMate equality holds as long as the flexural wavelength on
the beam is much greater than the overlap width w, which may be
expected to apply at least for the lowest few modes of practical
systems. Here

% k (88)

represents the natural frequency of the overlap mass on a spring
having the stiffness of the layer of asperities; m denotes the
beam mass per unit length. One would expect wo>>n for the
lowest few modes.

Similarly, one may rewrite Eq. (85) as

Y2 [n 2  1 6n 3v i y 2 22
Sy 0c3C2 r]n o 'nY 2k M3 + + 2a (89)

where the approximate equality applies for p/ = /7<<l
n n

IV. BEAM RESPONSE PARAMETERS

A. Beam Deflection Shape

It is well known2 that the deflection shape of a uniform
beam that is driven laterally at (circular) frequency wo may be
expressed as

iWt
(B1 sin px + B2 cos px + B3 sinh px + B4 cosh px)e 0 (90)

where t denotes time, the B's are constants that depend on boun-
dary conditions; and p is the wave number and is given by

p oc2m/EIb (91)

116



Here m is the beam mass per unit length, I the moment of inertia
of the beam cross section, and E the modul2s of elasticity of the
beam material.

In view of the symmetry of the beam under consideration one
may confine his attention to only one half of it, say the left
half of Fig. 42a. If the origin of the x-axis is taken at the
left support and if this support is assumed "clamped", then appro-
priate boundary conditions are

y(O) = y'(O) = y'(L) = 0 , y(L) = y0  , (92)

where the prime denotes differentiation with respect to x. Appli-
cation of these conditions to Eq. (90) permits one to find

B1 = - B3 = YoX 1 /Y

B2 = - B4 = YoX2 /y(

where X1 Bsin P + sinh

X 2  cos P - cosh

Y 2(1-cos cosh P)

P pL.

B. Parameter C of Eq. (35) for Non-resonant Conditions

By substituting Eqs. (93) into (90), introducing the result
into Eq. (35) and carrying out the indicated integration, one
finds that

4Y2 C/p = 2Xl(X3 + fxI) + (x2 - X2)(X 2 - cosh P) sin

- 2 + x 2 )(X2 + cos sinh (94)

At resonances of the beam one finds that Y=O and that C according
to the previous equation then takes on an infinite value. This
result is not surprizing, since the classical theory of undamped
beam vibrations implies that at resonance infinite deformations
occur at locations where no restraints are prescribed. In actu-
ality, of course, the beam deformations at resonance are limited
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by damping and generally also by nonlinearities (particularly if
damping is small). The foregoing analysis of this section thus
cannot be applied to the calculation of C or AL 1 for resonant
conditions.

At frequencies not too near a resonance, Eq. (94) should,
however, still provide a good estimate of C. For frequencies
below the fundamental resonance one may obtain a useful approx-
imation by substituting into Eq. (94) the various series expin-
sions of the hyperbolic and circular functions. Then, for V<<l
one may reduce the result to

C/p = 3/5P or C = 3/5L • (95)

The beam motion somewhat below the fundamental frequency takes
place quasi-statically; i.e., inertia effects are negligible.
Indeed, if one computes C from the static deflectionL/ one
obtains precisely the previous result.

Although Eq. (94) permits one in theory to evaluate C for
any off-resonance frequency, such calculations for higher fre-
quencies may be of little value, since there the assumed boundary
conditions may be rather poor representations of reality, and
other uncertainties (e.g. in material properties) may lead to
considerable error.

C. Parameter C of Eq. (35) for Resonances

In order to evaluate C at resonances one may take an alter-
nate approach and assume that the deflection shapes obtained are
the resonant mode shapes of a clamped-clamped beam. Then the
deflection shape associated with the nth mode may5 'e written
(within an arbitrary multiplicative constant) as -

yn = cosh pnx - Cos pn x - n(sinh pnx - sin pnx) (96)

where

cosh(21n) - cos(21n) (

an sinh(2 Pn) - sin( 2 1n) n PnL (d7)

and the wave numbers pn are solutions of the "frequency equation"

cos(2Pn) cosh(2Pn) = 1 . (98)
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For the odd-numbered modes (which are the symmetric ones and
hence the only ones of interest here) the maximum beam deflection
y occurs at the beam center x=L and may be readily evaluated
fiom Eq. (96). By substitution of Eq. (96) into (35) one finds
that Cn, the value of C for the nth mode, may be expressed as

C =fnR /4Y 2 L (99)

n n non

where

Rn = (l+a2 )(cosh n-2cos 0 ) sinh Pn Pn n n

+ (1-a2)(2cosh 0n-Cos Pn) sin n

(100)

- 2anCS n ) 2 + 2a2

Yon = cosh Pn - cos Pn - an(sinh Pn - sin Pn)

By substitution of Eq. (98) into (97) and using both of
these to simplify Eqs. (100) one finds that

2 sinh(2fn)

n cosh(2pn)[cosh(2P ) + li n s'nh n

(101)

1 +Vcosh(2 n)

Yon = cosh Pn

For Pn>>l, therefore,

R 2(Pn-l) , on =V

(102)Pn
Cn L T-(Pn-l)
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Values of C L for the first few odd (symmetric) modes are
tabulated blow*

nIn I3 5 7 9

Pn 2.365 5.50 8.64 11.78 14.9

C nL 0.61 6.25 16.6 31.6 51.8 1

D. Parameters CM and CQ of Eqs. (78), for Resonances

By direct substitution of Eq. (96) into Eqs. (78) one obtains

C =2EI pn/Y C = - nPnCM (103)
M n onQ nnM

where a is given by Eq. (97) and y by Eq. (100). Some values
calculaPed for the odd-numbered mod2R of a clampe -clamped beam
with the aid of the tables of Bishop and JohnsonV' are tabulated
below. The approximaticns given in Eqs. (86) follow at once from
these values.

n 3 5 n>5

n-l

Yon 1.588 -1.406 1.415 ( ) 2Vr

an= CQ/PnCM .982 1.000 1.000 1.000

n-i

CM/-, E /yon .892 -1.006 .999 (-1)

*For n>5, P =(2n+l)r/4. For n up to 5 one.my calculate CnL
directly f om Bishop and Johnson's Tables - The values for
n=1,3,5 shown here were obtained in this manner; use of Eq. (102)
gives, respectively CnL=0.8 1, 6.17, 16.5. The approximation of
Eq. (102) improves with increasing n.
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E. Relation Between Loss Factor and Power Dissipation

The loss factor qs of a structure may be defined as

1s = U/2wW , (104)

where U denotes the energy dissir&ted per cycle and W the "energy
of vibration", which may be taken as the (time-wise) maximum
kinetic energy of the structure as long as qs is not too large-.

If a beam vibrates sinusoidally in time, its deflection may
iW t

be expressed in terms of y e , where y denotes tO- deflection
shape. A general deflection shape may be expressedL4/ in terms of
the normal mode shapes yn(x) as

y = Z Ynyn  , (105)

where the Y are constants and the summation is taken over all
integers. he velocity of the structure is given by

iW t iW t
(d/dt)(ye 0 ) = io e 0  , to which corresponds an amplitude

(time-wise maximum) given by wo y. The maximum kinetic energy
then may be expressed as

W = m. f W2y2 dx = m 2 Z y2 fy2 dx (106)0y 2x 0 n Y
n

where m denotes the mass per unit length and the total length
of the beam.* The last form of Eq. (106) follows from the
orthogonality of normal modes.

At w r, the resonance frequency of the rth mode, the rth mode
response predominates and

W m 2 y2 f ( L y 2r = 2 'r r r r Yndx . (107)2

*The discussion here applies also for two dimensional structures,
e.g. plates, if the mode shapes are taken as two-dimensional and
the beam length 2 is replaced by plate area.
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Or is a dimensionless constant that depends on the shape of the
r th mode and on the normalization one imposes o the normal mode
functions. If one follows Bishop and Johnson! , and chooses the

y so that fj y2 dx = $, then 0 =1 and one may simplify Eq. (107)
acordingly. 

n

The average rate of energy dissipation, i.e. the power dis-
sipation Pd" is given by

Pd = Uf = Uwo/2v (108)

where f denotes the (cyclic) frequency. From Eq. (104) ?Re then
obtains that the power dissipated at resonances of the r mode
is related to the loss factor qs as

SWP = W3y2 (109)Pd = 'IsWr Tq=s r r

where mT=mL denotes the total mass of the beam.

The deflection amplitude at the beam center is given by
y(L)=Yryr(L), so that Eq. (109) may be rewritten as

d 2 U,r y32 2
mTIs =1-1s r rr °  r(rV r r 1r 0r

where X =y(L) has been introduced for the deflection amplitude
at the beam center, and where V =w X and A =w V denote the
corresponding velocity and accel8raFi8 n amplTtugeg. The parameter
ly, which was introduced in Eq. (110) for the sake of simplicity,
ig given by

'Yr 2/yr (L) (ill)

if the aforementioned normalization is used. y r is found to
have a value which is very nearly unity in all cases of interest.
In fact, for all odd modes of simply supported beams r=l exactly.
For built-in beams one may determine that yr=1.000 for r>5
( 1=0.795 for the first mode, 3=1I.01 4 for the third mode).
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F. Comparison of Energy Dissipation in Supports
of Cantilever and Clamped-Clamped Beams

Before one can deduce the energy dissipated in support joints
from loss-factor measurements carried out on beams, one must know
the energy of vibration W, as apparent from Eq. (104). If the
loss factor measurements are carried out at the r-th beam resonance,
then the appropriate energy Wr is given by Eq. (10T). With the pre-
viously indicated normalization of the mode shapes

Yn dx =(112)
0

one finds from Eqs. (104) and (107) that the total energy dissi-
pated per cycle is given by

U = rsTmTrYr (113)

The energy dissipated per cycle per support may then be calcu-
lated simply by dividing Eq. (113) by the number of supports. Some
attention must be paid to the selection of properly corresponding
modal amplitudes Yr if one wishes to use Eq. (112) to compare the
energies dissipated in supports of beams with different end condi-
tions (or mode shapes). By substitution of the deflection shape
y=Yryr( x) into the expressions of Eqs. (78) for the bending moment
Mb and shear force Q acting at a clamped support one may obtain

M=2 ,E
b b r r o

(114)

Q= EIb Y p 301v

where

Oi D 2 yr/6(prx)2 ]x=O [ 3yr/(PrX) 3 ]x=O (115)

P is the wave number corresponding to the rth resonance and is
related to the frequency w r as given in Eq. (91).

For cantilevers and clamped-clamped beams one finds that
0"=2 (exactly) for all modest/ if the normalization (111) is used.0
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Similarly, 0'"=2 within 2% for all but the first modes.
(O" = 1.468 for the first mode of a cantilever; 01 = 1 965 for
that of a clamped-clamped beam.) By combining Eqs. (91), (114),
(103) one may establish that

sM2 Q2 .(116)= (;) E b f t);"2  rrT,

As has been pointed out previously, &o and 0"o are insensi-
tive to mode number and to whether one or otwo beam ends are
clamped. Thus, the same value of cyclic energy dissipation U
applies for a given measured loss factor-71 at a given frequency
and for given moment and shear force amplieudes, for all modes
(except one*) of a beam with either clamped-clamped or clamped-
free ends. In other words, no mode shape correction need be
introduced in comparisons of clamped-clamped and cantilever beam
damping data, with one exception.*

*The exception is the first cantilever mode. For this mode

UI cant/Q 2  l.8(s/cr)l cant

Uothers/Q2  ( s/Cr) others
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LIST OF SYMBOLS FOR APPENDIX IV

A cross-sectional area of beam
A acceleration amplitude at beam center
0

A area of layer between support and beam

B,B2,9B3$,B4  constants

C coefficient defined in Eq. (35)

CM$CQ coefficients defined in Eq. (78)

C value of C for nth moden
E Young's modulus

F,G,H specific values of P

F yield forceY

G* complex shear modulus

G 1  real part of G*

G2  imaginary part of G*

I integral defined in Eq. (42)

I b  beam cross-sectional moment of inertia

J parameter defined in Eq. (70)

K stiffness

K1,K 2  constants

L half-length of beam

M integral defined in Eq. (50)

Mb bending moment

N axial force

P axial force, variable

P d power dissipation

Rn yon parameters defined in Eq. (100)

U energy dissipated by total beam per cycle of
lateral deflection

U c energy dissipated at one beam support per cycle
of axial motion

V o 0velocity amplitude at beam center

W total stored (strain) energy or energy of vibration
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Xo  deflection amplitude at beam center

Xl,X2  parameters defined in Eq. (93)Y parameter defined in Eq. (93)

Yn coefficients in modal expansion, Eq. (105)

a radius of circular friction area

b extent of reversed slip region (see Fig. 43)

c extent of re-slipped region (see Fig. 43)

c v  viscous damping coefficient

d distance over which slip occurs initially
(see Fig. 43)

f frequency

h thickness of layer between support and beam

k compressional stiffness per unit length of
asperities layer

2total beam length, 2L

m beam mass per unit length

mT total beam mass

n exponent, defined in Eq. (56)
p wave number, see Eq. (91)

Pn wave number corresponding to n th beam mode
p(z) distribution of supporting force per unit length

s axial displacement of beam ends

t time

u relative displacement at edge of overlap

UF,uG,uH values of u obtained with forces F,G,H

w total length of overlap

wr w at response of rth mode
x coordinate measured along (undeflected) beam length

y lateral deflection of beam

ymax time-wise maximum value of y0
YO value of y at beam center

Yn(x) mode shapes

z axial coordinate
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a parameter defined in Eq. (84)

Pparameter defined in Eq. (93)

ly parameter defined by Eq. (101)

A(2L) change in total beam projected length

TI loss factor of layer of asperities

TIS loss factor of structure

p. Coulomb friction force

p.a constant coefficient, used in Eq. (56) to describe

exponential friction force distribution

Lo constant value of T(x), for uniformly distributed

friction force

7(x) Coulomb friction force per unit length

p.1  constant coefficient, used in Eq. (53) to describe

friction force distributed over circle

'n,n parameters defined in Eq. (97)

V parameter defined in Eq. (36); has dimensions of

frequency

D rmode parameter defined in Eq. (107)r

wD 2wo

'on natural frequency of beam, radians/unit time

100 radian frequency of lateral 
motion
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b. FORCES ON OVERLAPPING PART (COULOMB FRICTION)
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c. FORCE DISPLACEMENT RELATION FOR
RIGID OVERLAP (COULOMB FRICTION)

FIG. 42 BEAM ON RIGID END-SUPPORTS
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FIG. 43 SLIP WITH GENERAL FRICTION DISTRIBUTION

130



(a) LAYER OF

ASPERITIES

z x

(b) Mb

Mb Mb

(c) jIjzz q zz-
p(x)

y

FIG. 44 COMPRESSION OF LAYER OF ASPERITIES
AT BEAM SUPPORTS
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